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Abstract

In this paper we present the contextual tag cloud system: a novel application that helps users explore a large
scale RDF dataset. Unlike folksonomy tags used in most traditional tag clouds, the tags in our system are
ontological terms (classes and properties), and a user can construct a context with a set of tags that defines
a subset of instances. Then in the contextual tag cloud, the font size of each tag depends on the number of
instances that are associated with that tag and all tags in the context. Each contextual tag cloud serves as
a summary of the distribution of relevant data, and by changing the context, the user can quickly gain an
understanding of patterns in the data. Furthermore, the user can choose to include RDFS taxonomic and/or
domain/range entailment in the calculations of tag sizes, thereby understanding the impact of semantics
on the data. In this paper, we describe how the system can be used as a query building assistant, a data
explorer for casual users, or a diagnosis tool for data providers. To resolve the key challenge of how to
scale to Linked Data, we combine a scalable preprocessing approach with a specially-constructed inverted
index, use three approaches to prune unnecessary counts for faster online computations, and design a paging
and streaming interface. Together, these techniques enable a responsive system that in particular holds a
dataset with more than 1.4 billion triples and over 380,000 tags. Via experimentation, we show how much
our design choices benefit the responsiveness of our system.
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1. Introduction

We present the contextual tag cloud system1 as
an attempt to address the following questions: How
can we help casual users explore the Linked Open
Data (LOD) cloud? Can we provide a more de-
tailed summary of linkages beyond the LOD cloud
diagram2? Can we help data providers find poten-
tial errors or missing links in a multi-source dataset
of mixed quality? When a user wants to design
a SPARQL query for an unfamiliar dataset, they
must resolve three basic questions: (1) Syntactic
Correctness: “What classes are available?” (2) Se-
mantic Correctness: “Does this class refer to the
concept I expect?” (3) Meaningful Results: “Does
the dataset hold enough knowledge coded with the
vocabulary I choose?” Since there are two aspects of
a dataset: the ontological terms (classes and prop-
erties) and the instances, the questions cannot be

1http://gimli.cse.lehigh.edu:8080/btc/
2http://lod-cloud.net/

answered by only viewing the ontology axioms or
only inspecting a small sample of instances. A com-
bined view of both aspects is necessary. Further-
more, there are two types of linkages: ontological
alignment and owl:sameAs links between instances.
The usability of multi-source RDF dataset is largely
affected by the erroneous or missing links of both
kinds in the dataset. If we can emphasize the un-
likely facts, then data providers will have a tool to
help them uncover such problems in the dataset.

Our solution is to use tag clouds to display statis-
tical information about the distribution of instances
among various ontological terms. A key feature is
that each tag cloud is relative to a type consist-
ing of ontological terms that is dynamically defined
by the user. In analogy to traditional Web 2.0 tag
cloud systems, an instance is like a web document
or photo, but is “tagged” with formal ontological
classes, as opposed to folksonomies. Tags are then
another name for the categories of instances. We
extend the expressiveness and treat classes, proper-
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ties and inverse properties as tags that are assigned
to any instances that use these ontological terms
in their triples. The font sizes in the tag cloud re-
flect the number of matching instances for each tag.
We allow the user to change their focus on a spe-
cific subset of instances in the dataset by specifying
a combination of ontological terms as the context
on the fly, and then the resulting contextual tag
cloud will resize tags to indicate intersection with
this context.
With any uncurated dataset, one must maintain

a healthy skepticism towards all axioms. Although
materialization can lead to many interesting facts, a
single erroneous axiom could generate thousands of
errors. Rather than attempting to guess which ax-
ioms are worthwhile, our system supports multiple
levels of inference; and at any time a user can view
tag clouds with the same context under different en-
tailment regimes, which helps users understand the
dataset better and helps data providers investigate
possible errors in the dataset.
Starting from our initial version of the system

[1] that used DBPedia data, we add features and
load the entire BTC2012 dataset. This complex
dataset contains 1.4 billion triples, from which we
extract 198.6M unique instances, and assign more
than 380K tags to these instances. This multi-
source, large-scale dataset brings us challenges in
achieving acceptable runtime performance, afford-
able preprocessing, and user-interface design. The
rest of the paper is organized as follows: we first
formally define the concepts and computation prob-
lems, and then showcase some use scenarios along
with introduction to system functionalities; then
we discuss the preprocessing steps, online computa-
tion and multi-level inference; after that we provide
some experimental results; then we compare with
related works; and lastly we conclude.

2. Basic Concepts

Given an RDF dataset, an entailment regime
R defines what kind of entailment rules will be
applied to the explicit triples. In our imple-
mentation, we have two specific sets of rules:
RSub for sub/equivalent class/property entailment
(rdfs5, rdfs7, rdfs9, rdfs11 3); and RDR for prop-
erty domain/range entailment (rdfs2, rdfs3). We
also support the combination of these two sets,

3http://www.w3.org/TR/rdf-mt/#RDFSRules

leading to four distinct entailment regimes R =
{∅, RSub, RDR, RSub ∪RDR}.

Let I be the set of all the instances, and T be the
set of all possible tags assigned to instances in the
dataset. Given R, the function TagsR : I → 2T re-
turns all the tags that are assigned to the given
instance under R-inference closure. For i ∈ I
we assign three types of tags: (1) Class C, if ⟨i,
rdf:type, C⟩ is entailed under R. (2) Property
p, if ∃j ∈ I, ⟨i, p, j⟩ is entailed. (3) Inverse Prop-
erty p−, if ∃j ∈ I, ⟨j, p, i⟩ is entailed. Note un-
der monotonic logic, R1 ⊆ R2 ⇒ TagsR1

(i) ⊆
TagsR2

(i). The function InstR : 2T → 2I returns
the set of instances that have been assigned the
given set of tags. For convenience, we define the
frequency of a set of tags T as fR(T ) = |InstR(T )|.

Given that we are substituting tags for triples,
we can generalize various entailment rules into
tag subsumptions. Tag t1 is a sub tag of tag
t2 if and only if for all sets of assertional triples
InstR({t1}) ⊆ InstR({t2}). Then the domain/range
entailment can be turned into sub tag relations. If
⟨p, rdfs:domain, C⟩ and ⟨p, rdfs:range, D⟩, then
p is a sub tag of C and p− is a sub tag of D.

A context is an expression of tags dynamically
constructed by a user. In our implementation, we
allow intersections of any number of tags or the
negation of tags. A Negation Tag ∼t is virtu-
ally assigned to an instance i, if t /∈ TagsR(i).
Note that the semantics are based on negation-
as-failure. We argue that this is the correct se-
mantics for a system where what is not said is
sometimes as important as what is said. Thus a
context with {t1, . . . , tn,∼s1, . . . ,∼sm} actually de-
fines a subset of instances: InstR({t1, . . . , tn}) −∪

x=1,...,m InstR({sx}). For a given context and en-
tailment regime R, the system shows all the tags
used by any instance in the subset specified by the
context, and the size of each tag reflects the number
of instances having this tag within the subset.

For convenience, we omit the subtle details re-
quired to process negation tags for the remainder
of this paper. This allows us to present a simpli-
fied exposition where a context T ⊂ T is a set of
tags, and the instances specified by the context is
InstR(T ).

We define a contextual tag cloud, given con-
text T ∈ T and entailment regime R, as a
list of tags [t1, . . . , tn] with various font sizes
[fs1, . . . , fsn] that reflects the instance sizes
[fR(T ∪ {t1}), . . . , fR(T ∪ {tn})]. We always map
the total number of instances to the max font size,
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Figure 1: Property Tag Cloud with contexts foaf:Group and ∼schema:MusicGroup.

map 1 to the min font size, and for any given tag
frequency, we use log functions on it to calculate the
font sizes so that the tag cloud shows differences of
tags in orders of magnitude.

3. System Features and Use Cases

The initial tag cloud has context T = ∅ or seman-
tically T =owl:Thing, and the tags in the cloud re-
flect the absolute sizes of instances related to each
tag. We put classes and properties into two sepa-
rate views, so that users will not treat a property
called “author” (which may have domain Publica-
tion) as a class name by mistake. To emphasize
that difference, we also add an icon with “C” or
“P” in front of each tag. If a tag is clicked, it will
be added to the current context, and then a new
tag cloud will be shown for the updated context. A
user can add/remove any tags to/from the context,
and explore any dynamically defined types of in-
stances. A user can also switch to Instance View to
investigate the detailed triples of instances specified
by the context.
A user can also change the inference regime,

which by default is RSub, the subsumption infer-
ence. Usually we can expect tags to become larger
when more inference is introduced. If R entails that
a set of tags are equivalent, we choose a canoni-
cal tag to group them under. We display a ≡ af-
ter the canonical tag to indicate this; clicking it
will display the equivalent tags. Also for any tag
cloud, we can turn on the negation mode, and then
the tag sizes indicate how many instances do not

have this tag under the current context and in-
ference level. A negation tag can be also added
to the context, which mathematically means the
relative complement. For example in Fig. 1, the
property tag cloud with context foaf:Group and
∼schema:MusicGroup shows us the common prop-
erty usages of instances of foaf:Group that are not
instances of schema:MusicGroup.

With the BTC dataset, a challenging problem for
UI design is how we can show so many tags in the
tag cloud. A straightforward idea is to show tag
clouds in pages. To help users locate specific tags
in the tag cloud, we initially sort the tags alpha-
betically by their local names. When the system
receives a request (context T and inference R), it
will process tags in the same alphabetic order, and
then stream out whatever is available for the re-
quested page. If the user chooses to browse tags
alphabetically, then the streaming of results is gen-
erally able to stay ahead of the user by pre-fetching
results for tags on subsequent pages. Instead of
browsing, a user can also search for tags by key-
words. We index the local name, rdfs:label and
rdfs:comment (if it exists) for each tag to support
such keyword search. The retrieved tags will then
be shown in the tag cloud sorted by their relevance
to the keyword with their frequencies under the cur-
rent context and inference regime. In addition, we
provide sorting by tag frequency as another option,
so that users can easily see the most popular tags
under the current context and inference. However,
we have to wait until all the frequencies are com-
puted to enable this sort option. For some contexts,

3



Figure 2: Tag cloud returned by keyword search “area” with context dbpediaowl:Lake. The tags are sorted by the relevance
to the query, while their sizes reflect the frequencies under current context.

Figure 3: Tag cloud with context dbpediaowl:MusicalArtist

it can take a few minutes for the overall computa-
tion of thousands of pages of results. We show a
progress bar of the computation and the estimated
time left; and while waiting for frequency sorting to
be available, users can still browse by alphabetical
order or search with keywords.

We believe our system can be used for multiple
purposes. Here we shall briefly describe four sce-
narios of a user interacting with the BTC dataset.

Choose the right terms for SPARQL. A
user wants to build a SPARQL query on lakes,
but does not know what classes about lakes are
available. Then by starting with a keyword search
“lake”, the user is presented with a tag cloud
with all tags that match the keyword, and finds
that dbpediaowl:Lake contains the most instances.
After picking this class, the user wonders what
property to use for querying the area of a lake.
Then by searching again with keyword “area”, the
user is presented with the contextual tag cloud
(as shown in Fig. 2) with keyword-matched tags
whose sizes reflect the intersection of the instances
of dbpediaowl:Lake and the tags. It turns out
dbpediaowl:areaTotal is the best choice of the
property.

Learn interesting facts. A casual user tries
a keyword search on “Manhattan”. There are
classes of parks, streets, hotels, etc. located

in Manhattan. However, it also has the class
yago:ManhattanProjectPeople; the user adds this
to the context to explore in more detail. In the
resulting tag cloud, the user finds various cate-
gories for such people, and then searches again
for “scientist”. Then surprisingly there is a tag
freebase:computer.computer scientist. The
user is intrigued, because she did not know that
any computer scientists were involved in the effort
to build the first atomic bomb. By adding that
tag and switching to the Instance View, she finally
learns that this scientist is John von Neumann.

Detect Co-reference Mistakes. Sometimes
when two tags have a small unexpected intersec-
tion, it is due to an error, rather than an interesting
fact. For example in Fig. 3, a user finds the tag
yago:BritishComputerScientist has one com-
mon instance with dbpediaowl:MusicalArtist (as
shown by a very small tag). By adding this tag
and looking into the triple details in the Instance
View, we find the two dbpediaowl:abstract val-
ues clearly refer to two different people who have
the same name but different birth years and occupa-
tions, and are incorrectly linked by an owl:sameAs

statement in the dataset.

Examine ontological errors. Under inference
RDR, a user finds that foaf:Person appears in the
tag cloud of context dbpediaowl:Software, imply-
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Figure 4: Examining ontological errors. The first property
foaf:homepage in the property view implies class foaf:Person.

ing that some people are software, or vice versa!
If the user changes the inference to R∅ or RSub,
this error will disappear. So that means there
must be something wrong with the domain-range
inference. If there is a property claimed as having
foaf:Person as it domain, then any instance using
this property will be classified as the instance of this
class. With this assumption in mind, the user adds
both foaf:Person and dbpediaowl:Software to
the context, selects the property view and infer-
ence RDR, and sorts the properties by frequency.
Then the top tag is foaf:homepage, which has all
the instances in the current context (by hovering
the mouse over the tag, we can see the frequency of
this tag). This is very suspicious, and by clicking
on the “P” icon before foaf:homepage, the user
can see (in Fig. 4) that foaf:Person is an inferred
super tag of this tag, and that causes the error. By
checking the raw ontology we find that although
the domain of foaf:homepage is owl:Thing in the
foaf schema, two other sources in the BTC dataset
make the claim that the domain is foaf:Person

and foaf:Agent respectively.

4. Infrastructure

Our main challenge is to compute fR({t} ∪ T )
for ∀t ∈ T efficiently. There are two ways to ap-
proach this problem: (1) ensure efficient calculation
of fR(T ) for any T ; and (2) prune unnecessary calls
of fR({t}∪T ). Thus we need to correctly structure
the repository and develop affordable preprocess-
ing. Our previous experiments [1] showed that an
RDBMS with decomposed storage model [2, 3] is
not as efficient as using an Information Retrieval
(IR) style index for this specific application pur-
pose, both in terms of load time (8X) and online
query time (18X). Therefore we extend our IR ap-
proach, but meanwhile add more steps to deal with
the BTC dataset.

4.1. Preprocessing
Our preprocessing is shown in Fig. 5, where the

dashed boxes are input or intermediate data and
the solid ones are data results for the online sys-
tem. First, we parse the raw data and categorize
triples into three files.The ontology is processed into
a closure set of sub-tag axioms for the given infer-
ence regime(s); the closure is then responsible for
two functions: subR(t) and superR(t) which respec-
tively return the sets of sub/super tags of tag t un-
der inference R. We also use the union-find algo-
rithm to compute the closure for owl:sameAs state-
ments, and pick a canonical id for each owl:sameAs

cluster by selecting the alphabetically smallest one
among the URIs. Then for the instance triples, we
replace any instance with its owl:sameAs represen-
tative (if any). If the object of the triple is also an
instance, we flip the triple and add it to the inter-
mediate file, i.e., if the triple is ⟨i, p, j⟩, the flipped
one is ⟨j, p−, i⟩. By this means, we can find all the
tags (including inverse property tags) of an instance
i by simply looking at the triples with i as a sub-
ject. To index an instance, we need to first group
all of its triples together. Hence we first output the
triples into n files based on the hashcode of the sub-
jects, so that we keep each instance’s information
in the same file while making each file relatively
small. Then we use merge sort on each “replaced
and flipped” file, so that triples with the same sub-
ject are clustered together. Note that by splitting
the triples into n files, we gain benefits from two
sides: (1) sorting each file becomes faster, especially
since we do not need to merge the sorted files; (2)
we can sort in parallel (multiple machines/threads).
From the ontology, we compute the inference clo-
sure of ontology terms using the chosen entailment
regimes. This closure and the sorted triple files are
then used to infer tags for each instance and the
results are recorded in an inverted index.

The inverted index is built with tags as index-
ing terms and each tag has a sorted posting list
of instances with that tag under each entailment
regimes. This means given a “type” defined by a
set of tags and an entailment regime, we can quickly
find all the instances by doing an intersection over
the posting lists. Also, since we use negation as fail-
ure, we do not need to index negation tags; their
size can be calculated from its complementary tag.
i.e. fR({∼t} ∪ T ) = fR(T ) − fR({t} ∪ T ). Mean-
while we add other fields such as labels of instances,
sameAs sets, file pointers to the raw file, etc. to fa-
cilitate other features in our tag cloud system.
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Figure 5: Preprocessing for the tag cloud system

To help prune unnecessary tags under any given
context T , we precompute the Co-occurrence
Matrix MR: a |T | × |T | symmetric boolean ma-
trix, where MR(x, y) denotes whether tag tx and ty
co-occur, i.e. MR(x, y) = (fR({tx, ty}) > 0). There
are three ways to generate MR.

1. Traverse all the instances. For each in-
stance i ∈ I, get all of its tags TagsR(i), for any
pair of tags (tx, ty) in TagsR(i), set MR(x, y).

2. Traverse pairs of tags. For any pair of
tags (tx, ty) from T , if fR({tx, ty}) > 0, set
MR(x, y).

3. Traverse tag instances. For each tag tx ∈
T , get each instance i ∈ InstR(tx), and then
set MR(x, y) for ∀ty ∈ TagsR(i).

Note that in a multi-source cross-domain dataset
such as the BTC dataset, MR is very sparse since
many tags never co-occur in any instance. That
suggests that the second approach will get many
many pairs with 0 results, and is not as efficient as
the third approach where the number of iterations
per instance is usually very small as |TagR(i)| are
usually very small. Compared to the other two, the
first approach will repeatedly set the same cell in
MR(x, y). Given the number of tags, there are no
data structures that allow the matrix to fit in mem-
ory and be accessed efficiently. So the first approach
is slow due to lots of file I/O. Thus, we choose the
third in our implementation. This matrix provides
a function for each tag tx to return all the tags
that co-occur with it in at least one instance. i.e.
COR(tx) = {ty|MR(x, y) = 1}, which is used in one
of our pruning methods for online computation.

4.2. Pruning for Online Computation

Let CL be the candidate list of tags whose queries
are finally issued. There are two special cases of
the fR results: (1) fR({t} ∪ T ) = fR(T ); and (2)
fR({t} ∪ T ) = 0. For the first case, if t is a super
tag of any tag in T , adding t to T does not change

the instance set and thus does not change fR. For
the second case, we propose three different pruning
approaches to make CL as short as possible.

1. Use the Co-occurrence Matrix (M).
Given T ,

∩
t′∈T COR(t

′) has (and not nec-
essarily only has) all the co-occurred tags
{t|fR({t} ∪ T ) > 0}.

2. Use the previous tag cloud cache (P).
Given context T = {t1, . . . , tn}, the co-
occurred tags are a subset of tags in the cached
results (if exists) for context {t1, . . . , tn−1}.

3. Dynamic update (D). If fR({tx} ∪ T ) = 0,
ignore ∀ty ∈ subR(tx) in further computation.

The online computation works as shown in Fig.
6, where the pruning steps are marked with red
circles. First, the input context T will be simpli-
fied (under R-Inference) to its semantic-equivalent
T ′ so that any redundant tags will be removed and
any equivalent tag will be changed deterministically
to a representative tag. Then the system checks
whether this semantic-equivalent request has been
kept in cache for direct output. If not, the system
will get candidate lists CLM from approach M with
input T ′ and CLP from approach P with input T .
Then we use the intersection CL = CLM ∩ CLP

as the candidate list for queries and keep updating
it using approach D. In theory, approach D can be
further optimized if we sort the list of tags such
that sub tags always follow super tags. However,
our system does not use this optimization because
it needs to stream results alphabetically. Using sim-
plified T ′ as input in approach M will get the same
candidate tags as using T but avoids unnecessary
intersection of lists when computing the candidates.
On the other hand, using the original T as input in
approach P is necessary for identifying the previous
context; and then this previous context is simplified
before it is used in cache-lookup.
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Figure 6: Pruning for Online Computation

4.3. Supporting Different Entailment Regimes

For any given inference R, we can represent
TagsR, InstR and COR with the primitive no-
inference functions: Tags∅, Inst∅ and CO∅ and the
tag subsumption axioms: superR and subR.

TagsR(i) =
∪

t′∈Tags∅(i)

superR(t
′) (1)

InstR(T ) =
∩
t∈T

∪
t′∈subR(t)

Inst∅(t
′) (2)

COR(t) = super∪R(CO
∪
∅ (subR(t))) (3)

where super∪R(T ) =
∪

t′∈T superR(t
′) and

CO∪
R(T ) =

∪
t′∈T COR(t

′).
Different entailment regimes are supported by

the “[Multi-Inference]” steps in Fig 5. First, infer-
ence closure is performed for each entailment regime
R. Then when populating the instance index, we
use Eq. (1) to compute the TagsR for each instance
and store in different index fields. Since we mate-
rialize tags for all regimes, we do not need to use
Eq. (2) at query time. Finally in the “Tag Co-
Occurrence” step, we only compute CO∅ and use
Eq. (3) at query time.
We made our design choices based on two rea-

sons. (I) How much slower will it be if not mate-
rialized? Both Eq. (2) and (3) include union and
intersection of sets or posting lists, however the lists
of instances are usually much larger and using Eq.
(2) significantly increases query time compared to
the materialized index. (II) How important is the
online performance? As in our scenario, for each
tag cloud given T and R, COR is only called once,
however InstR is called for each tag from the can-
didate set. Also note Eq. (3) can be used for either
online computation of COR or precomputation if it
is materialized. Building the co-occurrence matrix

MR is a very time consuming preprocessing step.
We do not need to do that four times for four en-
tailment regimes. Instead, we only need to build
M∅, which is the easiest because each instance has
the minimal number of tags, and the co-occurrence
for all the other entailment regimes can be com-
puted based on Eq. (3).

5. Experiments

Our system is implemented in Java and we con-
duct all experiments on a RedHat machine with a
12-core Intel 2.8 GHz processor and 40 GB memory.

We apply our preprocessing approach to all five
subsets of the BTC2012 dataset, as well as the
full dataset, and plot the time/space for datasets
against their numbers of total triples in Fig. 7,
which shows the scalability of our preprocessing ap-
proach. The disk space is for both the index and
the no-inference co-occurrence matrix, and is dom-
inated by the index (which usually takes > 90%).
The time is quite linear with the total number of
triples, because most of the major steps are lin-
ear w.r.t. the number of triples. The space how-
ever is slightly less correlated to the total number
of triples, since many different triples might only
contribute to a single tag in the index. For exam-
ple, 1000 triples saying a foaf:Person foaf:knows

1000 different people only contribute a single prop-
erty tag to this person. This is what happens
in the timbl subset, and explains why timbl has
slightly more triples than dbpedia but needs less
time/space.

We then test the response time of fR({t} ∪ T )
queries, i.e. how long it takes to count the in-
stances of tag t with context T by querying the
index. To ensure a random but meaningful con-
text T , i.e. InstR(T ) ̸= ∅, we randomly pick an
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instance i and get a subset (size of 6) from its tags
Tags∅(i) as [ti,1, ti,2, . . . , ti,6]. Thus the six tags in
this array are known to co-occur under all entail-
ment regimes. We generate 100 such arrays using
different i. Additionally, we pick a set S of 10000
random tags. Starting from k = 1 . . . 6 (The initial
tag cloud (|T |=0) is precomputed and cached, thus
we do not test it in the experiments), we use the
first k tags in the arrays as contexts T , and we mea-
sure the average time of fR({s} ∪ T ) for all s ∈ S.
While S might overlap with some T , it does not af-
fect measuring the query time since we will issue the
same fR queries without reducing the query terms.
We also change R = ∅, RSub, RDR, RSub ∪ RDR to
examine the impact of different inference. The av-
erage time per 10K queries grouped by |T | is shown
in Fig. 8. In average, it takes 0.6∼0.7 milliseconds
for a single fR query. The time slightly increases
(sub-linear) when we add more tags to context. It
takes longer if R has more inference rules due to
longer posting lists of tags in the index. As we
expect, since there are fewer tags added to each
instance from domain/range inference, we find the
curves for RDR and ∅ are close, while RSub and
RSub ∪RDR are nearly identical.

For the different subsets, we test the response
time of fR(T ) with random T . Since freebase does
not have any ontology axioms, we choose R = ∅.
For each dataset, we generate 500K random queries
for |T | = 1, . . . , 5 (100K each), and record the av-
erage time for every 1000 queries. In Table 1, we

Table 1: Average time per 1000 queries over datasets
Dataset Time Triples Instances Tags PList
rest 257ms 22.3M 4.1M 3K 6581

freebase 270ms 198.1M 23.5M 308K 3661
timbl 326ms 204.8M 22.7M 12K 11616

dbpedia 341ms 101.2M 31.1M 29K 445
datahub 972ms 910.1M 122.0M 33K 22644

full 1256ms 1436.5M 198.6M 378K 2986

|T| =389194
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Figure 9: Average Number of Pruned Tags

report the average time for 1000 random queries on
each dataset, as well as possible impacting factors
such as the number of triples/instances/tags and
the average length of posting lists (PList) in the in-
dex (i.e. on average, how many instances have each
tag). We can see that the numbers of triples/tags
do not directly impact query time, but the numbers
of instances are very correlated. When the numbers
of instances are similar (timbl and freebase), a
huge difference in the average lengths of PLists can
also impact the time.

We also test how well our system does for prun-
ing candidate tags under the most complex infer-
ence R = RSub ∪ RDR. Using the approach above,
we generate 100 arrays of length 6 from TagsR(i),
by changing the length of sub arrays we get 600
random T . As we discussed in Section 4.2, there
are three approaches: by co-occurrence matrix (M),
by previous cache (P), or by dynamic update (D).
By each combination of approaches, we count how
many fR queries are finally issued, and see how
many queries are saved. Note there is always some
pruning due to super tags of tags in contexts. When
using approach P, we always assume the previous
cache is available. The average number of pruned
tags is shown in Fig. 9. There are |T | =389K tags
in total however most tags only co-occur with a few
other tags. Pruning usually saves us many unnec-
essary queries. When |T | increases any approach
will generally prune more tags because more tags in
T means a more constrained context. Among the
three approaches, M prunes more tags on average,
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Figure 11: Time for loading all pages

and enabling the other two approaches with M only
provides less than 1% more pruning (thus we do not
show the overlapping curves for combinations MP,
MD and MPD). This justifies the preprocessing for
the co-occurrence matrix. P also has good pruning
except that when |T | = 1, the cache of |T | = 0 is a
list of every tag and P will not help. However, in
the tag cloud scenarios, |T | = 1 is important as it
will decide the response after the user’s first click.
Also in the real world the history cache might not
be available (e.g. a user adds t1, t2, t3 and then re-
moves t2). So its availability is a concern although
it requires no preprocessing.
Lastly we test with end-to-end web requests. We

create a random browser model, with 0.6 probabil-
ity to add a tag to the context, 0.2 probability to
remove a tag from the context, and 0.2 probabil-
ity to start over with empty context. In order to
simulate more realistic requests, when the context
size is small, we bias in favor of adding tags. Also
when trying to add a tag, we give the more fre-
quent tags in the tag cloud a higher chance to be
selected. Using this model, we randomly generate a
series of 1000 requests on RSub, including 699 add
requests, 118 remove requests, and 183 start-over
requests (note when the context has only one tag,
we count the remove request as start-over), with an
average context size of 2.53. We record the time

spent on displaying all the tags (up to 200 tags per
page) in Page 1, and that on finishing computation
for all the pages (that is also when the “Sort by
Frequency” feature is enabled). In Fig. 10 and Fig.
11 we show the percentage of requests that can be
finished within x seconds. For displaying Page 1,
90% of all the requests can be finished within 1s,
and 97.7% within 2s. Among these requests, start-
over is the fastest (not shown) since it just returns
the cached results. On average, remove requests are
faster than add requests since they are more likely
to have a shorter context or be cached due to pre-
vious add requests. On the other hand, only 65%
of the queries could load all pages in under one sec-
ond, and the rest varied uniformly up to a minute.
This signifies the importance of streaming results
and displaying them in pages. Also, this justifies
the decision to defer the frequency sort option.

6. Related Work

Many recent systems for exploring RDF datsets,
such as /facet [4], gFacet [5] and BrowseRDF [6],
use or extend the faceted browsing idea: a user can
construct a selection query by adding constraints
and each new added constraint will update the in-
terface to display further facet options based on the
current selection query results. Our system is sim-
ilar to faceted browsing systems in the sense that
each tag in a contextual tag cloud is a “boolean
facet” that can be added to the query. Although our
system does not currently support constraints on
property values, unlike traditional faceted browsers,
it supports hundreds of thousands of “facets” and
scalably provides the user with information about
how each facet would impact the query (via the size
of the tag).

To the best of our knowledge, we have not seen
any other works like the contextual tag cloud sys-
tem, nor papers focusing on optimization for the
specific kind of query and resolving related prob-
lems. Our previous experiments [1] show using
an inverted index is much faster than the decom-
posed storage model [2, 3] for the specific kind
of query that counts instances of intersections of
classes/properties. We also found [7] this approach
is in average 10.2 times faster than the state-of-
the-art RDF store RDF-3X [8]. Both experiments
indicate that a general purpose SPARQL engine is
not always the right choice for a Semantic Web sys-
tem which requires scalable performance on special
kinds of queries. There are many applications using
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inverted indices on Semantic Web data. Semantic
Web search engines, such as Sindice [9], Watson
[10], Falcons [11], etc. create indexes for labels,
URLs, literal values or other metadata for locat-
ing Semantic documents or entities. Occasionally,
question answering systems [12, 13] use inverted in-
dices to help identify entities from natural language
inputs. All the above systems index with keywords
because the intended usage is to locate relevant re-
sources based on natural language queries posed by
users. Our system is very different because the
“terms” in our index are no longer keywords but
ontological tags. As a result, our index is compat-
ible with entailments sanctioned by the ontologies
in the data. This is also why we propose our pre-
processing steps prior to indexing, which we have
not seen in other works.

7. Conclusion

In this paper we introduce the features and use
cases of the contextual tag cloud system, and de-
scribe the underlying infrastructure. The contex-
tual tag cloud system is a novel tool that helps
both casual users and data providers explore the
BTC dataset: by treating classes and properties
as tags, we can visualize patterns of co-occurrence
and get summaries of the instance data. From the
common patterns users can better understand the
distribution of data in the KB; and from the rare
co-occurrences users can either find interesting spe-
cial facts or errors in the data. The main challenge
is how to provide a responsive system on a large
dataset such as the BTC dataset. In addition to
the interaction design, we implemented the infras-
tructure with an inverted index and three pruning
approaches, as well as a scalable preprocessing ap-
proach. In the experiments, we justified our design
choices.
To fully evaluate our current interface, we want

to have a formal user study in the future. Mean-
while, we have learned a lot from casual users’ feed-
back. One of the suggestions is to reduce the tags
shown on the screen, by clustering similar tags or
highlighting the most interesting tags. Another
suggestion is to enable search by example, so that
users can start with finding a familiar instance and
then explore the tags of this instance. We will also
study more advanced keyword search algorithms
than straightforward string match to improve the
recall. There are also ways to integrate our system
with other applications. For example, we may add

the parallel faceted browsing paradigm [14] to en-
able comparison between tag clouds. We would also
like to extend our system to allow users to annotate
tag clouds that are interesting or contain errors, as
a social exploration/diagnosis tool for the Linked
Data community.
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