
Using Instance Texts to Improve Keyword-based
Class Retrieval

Xingjian Zhang
Department of Computer Science and Engineering

Lehigh University, Bethlehem, PA 18015
Email: xiz307@lehigh.edu

Jeff Heflin
Department of Computer Science and Engineering

Lehigh University, Bethlehem, PA 18015
Email: heflin@cse.lehigh.edu

Abstract—In this paper we investigate the keyword based class
retrieval problem, which we define as how to identify ontological
classes that best match a keyword based query. Most previous ap-
plications use simple syntactic matching approaches on the class
labels and/or comments, or expand the keyword query by using
lexicons such as WordNet, but fail to retrieve relevant resources
in many scenarios. Instead of relying on external sources, we
investigate this problem by using the annotations of instances
associated with classes in the knowledge base. We propose a
general framework of this approach, which consists of two phases:
the keyword query is first used to locate relevant instances; then
we induce the classes given this list of weighted matched instances.
If we identify sufficient text for the instances, then the first phase
can be solved by a traditional information retrieval (IR) query,
however the second phase might be cast in different ways: as an
additive value function, as an IR problem with instance as queries,
or as an instance-based ontology alignment problem. With many
applicable strategies initiated from different viewpoints, we find
that some of them are mathematically equivalent or very similar.
In the experiments we compare our proposed framework to
simple syntactic approaches and evaluate different strategies.

I. INTRODUCTION

Ontologies and Knowledge Bases (KBs) have become
widely used and are increasingly populated with real world
data. Particularly, Semantic Web techniques have been applied
to build KBs in many applications. While the ontology or
schema provides useful structuring of the data and often
includes semantics that can improve query answering, it also
serves as a barrier to casual users who may not know what
ontological terms to use or how they should be connected in
a KB. Thus an important problem in using KBs is how to
translate natural language queries to the appropriate ontolog-
ical terms. In this paper we address the resource retrieval
problem, which is the task to find the best matched resources
(classes, properties, or instance) in the KB given a keyword-
based query. Resource retrieval can be used in scenarios such
as: (1) a portal that helps users locate a KB of user’s interests;
(2) a keyword search bar to specify a resource when a user
explores a KB; and (3) a Question Answering (QA) system
that needs to translate natural language queries into resources
in the KB and later links these resources to form a valid query
(e.g. in SPARQL).

In most of these scenarios, existing tools typically use
simple string matching, although some expand the matching
by using lexicons like WordNet. We believe that leveraging
usage information from the KB can improve retrieval quality
better than referencing external lexicons. Our intuition comes

from the observation that in many scenarios, humans learn
what a named class refers to by looking into some of its
instances. For example, when we see a class named “Person”,
if after examining several random instances of it we find out
all of them are scientists, we have an idea that this class
Person may mainly refer to researchers. Now consider another
example: a class named “Cat”. If the instances include species
of tigers, leopards, etc. then we know that it refers to felines
in general, and not just the typical house cat. Similarly, a
resource retrieval component can also obtain more information
about a class by identifying patterns in the textual properties
of an instance, and using this information to improve retrieval
quality. Now consider the last example with an improved
retrieval component. When users query “tiger”, although there
is no class named “Tiger”, the retrieval component knows the
class Cat covers the query topic best.

In this paper, we focus on the problem of class retrieval
using instance texts. One of the interesting things about
the problem is that it can be viewed from many different
perspectives: we can solve it with an additive value function
that combines the matched instances; we can rewrite the class
retrieval query as an information retrieval (IR) query over
the matched instances; or we can apply approaches from
the instance-based ontology alignment problem. Our contri-
butions include: (1) a proposal of a two-phase framework that
solves the class retrieval problem using texts from instances;
and (2) modeling the problem from different viewpoints and
comparing these approaches with regard to the class retrieval
problem. The paper is organized as follows. In Section II, we
briefly introduce background knowledge related to our work.
In Section III, we propose our two-phase framework and define
instance texts. In Section IV, we discuss the problem from the
three aspects. In Section V, we show experimental results for
comparison and lastly in Section VI, we conclude.

II. BACKGROUND

Although many systems perform some form of resource
retrieval, to the best of our knowledge, none of them use
instances to improve the retrieval of classes. For example,
Sindice [1] is a state-of-the-art Semantic Web search engine
that has an inverted index over crawled resources, and allows
users to retrieve documents with statements about particular
resources. Inverse functional property values (e.g. email) are
indexed for instances retrieval. However, if there are many
similar matching instances, it is up to the user to determine
if any common classes might serve as an abstraction of the

queried concept. We find that although various strategies are
applied in different (controlled) natural language QA systems
[2][3][4], all of them implement and integrate some kind of
resource retrieval components. Most of these systems only use
the straightforward strategy for resource retrieval, i.e. exact
string match on the rdfs:label values, while a few QA systems
enhance their retrieval component by expanding queries with
WordNet. For example, Aqualog [3] uses synonyms, and
Tran et al. [4] extract synonyms, hyponyms (subclasses) and
hypernyms (superclasses).

While exact string match usually misses alternative expres-
sions, there are problems with synonym match. First, in some
domain specific KBs, people might use query terms that are not
in the lexicon. Second, a synonym might have other meanings,
and retrieving all occurrences of it can reduce precision.
Finally, the ontology creators and KB users may sometimes
use words that are not synonyms to refer to the same concept
[5] under different circumstances. For example the creator of
an academic ontology may use Person to name the concept of
people at an academic institution; but this concept only consists
of “Professors” and “Students”. Meanwhile in many cases a
partial match is useful. For the keyword query “professor”,
the Person class from the academic ontology may be suitable
as a partial match, even though it is a super class. This is
especially true if other constraints in the query restrict results
to someone teaching a course. Thus alternative approaches for
resource retrieval need to be investigated.

III. CLASS RETRIEVAL FRAMEWORK

Let C be the set of all the classes defined in the KB.
A class C ∈ C can be interpreted as a set of instances.
A subclass relationship C1 ⊑ C2 means the instance set
of C1 is a subset of the instance set of C2. The collection
of subclass relationships establish a graph of class hierarchy.
Classes and instances can have properties that relate them to
other things, including literal values as well as other classes
and instances. Among various properties, rdfs:label provides
a human-readable name of the instance or class, and thus is
frequently used for the class retrieval problem.

Formally, we define the class retrieval problem as: given a
natural language query q, return a set of ⟨class, score⟩ pairs
{⟨Ci, scri⟩}, where Ci ∈ C, and the score scri is how well
Ci matches q. We propose a two-phase class retrieval frame-
work.In the first phase, the query q is matched to instances’
texts (which we shall soon define), instead of directly matched
to classes’ labels. This step can be done with a standard IR
query; and a set of ⟨instance, IR score⟩ pairs RS = {⟨Ij , rj⟩}
are returned. Given a set of weighted matched instances, the
problem in the second phase is then how to induce the class
represented by these instances. Then scri is defined as a
function that may take Ci, RS and the rdf:type relations (i.e.
a property that denotes the class of an instance) in the KB as
arguments. We shall further discuss different implementations
of this function in the next section.

Intuitively, if we have collected sufficient instance texts,
the common terms among these instances are very likely to
be indicative of the class. In practice, instance texts can be
generalized as a function on an instance, as well as the given
KB, such as: (1) annotation properties such as rdfs:label

ExternalKB

ExternalKB

rdfs:label

rdf:type

rdfs:label

rdf:type

rdf:type

Ci

Ii1

Lexicon

Expansion

DLi1

DLi2

Ti3

WWW

Search

Li

Ii2

Ii3

direct text resource

expanded text

KB property external functionTi2T’i1

p2

f1

Ti1

Fig. 1. Expanded Texts of a Class Ci

(names) and rdfs:comment (despriptions). (2) properties with
high discriminability/coverage. A list of properties such
as job title/name/address can be automatically generated [6]
and further manually selected. (3) external links. External
knowledge, e.g. WWW search, or owl:sameAs links, can be
used as instance texts as well. (4) refining existing texts, e.g.
to extract key terms from any of the above instance texts. Both
lexicon expansions and our instance-based proposal try to find
more texts connected to class Ci in the graph (shown in Figure
1), but they have different research challenges: In contrast
with thesaurus-based extraction, where ambiguous syntactic
forms can potentially decrease relevance, our approach mostly
depends on how well the instance texts can represent the class;
and thus the important task is to specify useful texts and extract
representative keywords from them.

We use DBPedia 3.7 [7] for our experiments, because it
includes various kinds of classes (cross-domain), and contains
many rdfs:label and rdfs:comment (various texts). We find that
for some classes, the name of each instance usually contains
the category name, which can be an alternative to the label of
(a subset of) its class. e.g. the label “Chesterton Community
College” of an instance of class d:EducationalInstitution indi-
cates the category name “Community College”. However, the
labels of other classes like d:Person, d:Film, and d:Song are
less informative because the titles and names seldom contain
relevant terms to the class. On the other hand, rdfs:comment
(basically the content of the Wikipedia article) often contains
useful terms for class retrieval, but are usually too long and
contain many irrelevant terms too. However, the oft-repeated
terms in these values are often closely related to the class. To
enhance the chance that the selected texts accurately reflect the
class, we introduce a third text type by refining the comments
with simple string manipulations on the first sentance of it.
Thus in total we index three types of texts: labels, comments,
and fragments of comments with three indexing fields. Given
a query q and a specified text feature (a single field or any
weighted combination of them), a set of ⟨instance, IR score⟩
pairs can be retrieved via standard IR means; and the first
phase in our framework is done.

IV. INDUCING CLASSES FROM INSTANCES

From the first phase we have a set of ⟨instance, IR score⟩
pairs RS = {⟨Ij , rj⟩} as the results. For convenience, we
define Iq = {Ij | < Ij , rj >∈ RS} the set of all the instances

in RS. The task of the second phase is to assign an appropriate
score scri for each Ci in the KB. While the first phase can
rely on a standard IR approach, we have more choices in how
to induce a class in the second phase. In this section, we cast
it in three different ways as discussed below.

A. Additive Value Function

We start from the most straightforward intuition: if an
instance Ij of a class Ci is returned, the IR score rj associated
with Ij should somehow contribute to scri, the score of Ci.
In utility theory, the influence of multiple attributes can be
represented by an additive value function as long as we assume
mutual preferential independence holds between the attributes.
An additive value function is simply a multiatrribute function
that is the sum of a set of single attribute value functions.
Inspired by this idea, we define the additive value function
(AVF) score of a particular class Ci as:

scri =
∑

Ij∈Ci∩Iq

T (rj) (1)

In this formula, we take the score of each instance in the class
Ci, apply a normalization/transformation function T , and then
simply apply a naive summation of each transformed value.

We can define T with simple functions. For example, define
T0(rj) = 1 if rj > 0, otherwise 0, which means every instance
“votes” for its classes. Or set a threshold ϵ and let Tϵ(rj) = rj
if rj ≥ ϵ or 0 otherwise. If ϵ is set as the n-th greatest value in
{rj}, it means we only consider the top n matching instances.

Note that in a KB, Ij ∈ Ci can be either explicit or entailed
by ontological axioms. An instance thus can belong to multiple
classes even in single-inheritance ontologies. This suggests that
the score (or vote) T (rj) from each instance Ij should be
apportioned among every class it belongs to. Thus a modified
version is

scri =
∑

Ij∈Ci∩Iq

T (rj) · f(Ij , Ci) (2)

where f(Ij , Ci) factors how the vote from Ij is divided.
Naively, let ncj be the total number of classes Ij belongs to,
we can equally divide T (rj), i.e.

scri =
∑

Ij∈Ci∩Iq

T (rj)

ncj
(3)

However, this does not exactly reflect a general intuition
that the more specific classes should be more favored. Instead,
let f(Ij , Ci) =

1
|Ci| , where |Ci| denotes the size of instances

entailed in Ci, we have

scri =
∑

Ij∈Ci∩Iq

T (rj)

|Ci|
(4)

B. Instances as IR Queries

Another option is to consider the problem as another
IR problem by treating each class as an IR document, and
indexing each class with its instances’ IDs as its content. In
the index, each instance has a posting list of classes it belongs
to. Then the problem in the second phase of our framework is
cast as Boolean retrieval given a long query with query terms
Iq to this index. A basic tf-idf approach is

scri =
∑

∀Ij∈Iq

tf(Ci, Ij) · idf(Ij) =
∑

Ij∈Ci∩Iq

idf(Ij) (5)

An instance is either a member of a class (tf = 1) or not
(tf = 0), thus the tf merely denotes whether Ij ∈ Ci is true
(explicitly or by entailment) for this KB. Furthermore if we
consider that query terms are not equally weighted, again we
apply the transformed scores T (rj) associated with each Ij as
the boost factor, and then we have

scri =
∑

Ij∈Ci∩Iq

T (rj) · idf(Ij) (6)

The idf is usually defined as idf(Ij) = log NC

df(Ij)
, where NC is

the total number of documents (in our case classes). The num-
ber of classes is often relatively small in Linked Data datasets,
for example, in DBPedia, NC = 319. The log function is taken
to scale the huge difference among document frequencies of
terms (df(Ij)). However in our case, df(Ij) = ncj , which we
defined previously as the total number of classes Ij belongs to.
In DBPedia, for most of the instances ncj = 3 ∼ 5. Since ncj
does not change in orders of magnitude, for most of the time
we get idf(Ij) = 1.80 ∼ 2.02, thus we can approximately
treat logNC/ncj ≈ α as a constant. Then

scri =
∑

Ij∈Ci∩Iq

T (rj) · idf(Ij) ≈
∑

Ij∈Ci∩Iq

α · T (rj) (7)

is mathematically approximate to AVF in Eq. 1. To emphasize
the difference, we define idf ′ without the log, then

scri =
∑

Ij∈Ci∩Iq

T (rj) · idf ′(Ij) =
∑

Ij∈Ci∩Iq

NC · T (rj)
ncj

(8)

which is in proportion to Eq. 3, and thus is equivalent to it
with regard to the output of rankings of classes. In practice,
the basic tf-idf approach above is usually tuned with various
normalization factors, and we will use a state-of-the-art IR tool
in the experiment to evaluate this casting perspective.

C. Ontology Alignment Problem

We define a virtual class Dq , which is the concept that
directly corresponds to the query need represented by the term
q; and our task is to find the class best aligned to Dq . Note
that not all the instances that contain keyword q are necessarily
instances of Dq , and not all the instances of Dq necessarily
contain keyword q in their text.

From the first phase, the result set ⟨Ij , rj⟩ actually returns
a set of instances that are likely to be instances of Dq , where
the relevance score rj indicates such likelihood. So we can first
apply a function Tp(rj) which is the probability that Ij is an
instance of Dq . In addition we use a factor α to compensate for
the estimation errors that arise because Dq and the instances
with keyword q are not perfectly aligned; eventually we can
define a transform function Tα(rj) = α · Tp(rj). Then Tα(rj)
can be interpreted as the expected number of instances of Dq
that Ij represents. The total size of Dq is estimated as

|Dq| ≈
∑

∀Ij∈Iq

Tα(rj) (9)

Based on the uniform assumption, we can estimate:

|Dq ⊓ Ci| ≈
∑

Ij∈Ci∩Iq

Tα(rj) (10)

With these estimated sizes, many existing approaches in
instance-based ontology alignment can be applied. e.g. the the

most commonly used Jaccard (Jcd) approach is defined as:

scri =
|Dq ⊓ Ci|
|Dq ⊔ Ci|

=
|Dq ⊓ Ci|

|Dq|+ |Ci| − |Dq ⊓ Ci|
(11)

There are also measures for ontology matching based on
information theory. e.g. The Pointwise Mutual Information
approach (PMI) measures the reduction of uncertainty that the
annotation of one concept yields for the other. Mathematically,
it is the log of the ratio between the probability of their
coincidence given their joint distribution and the probability
of their coincidence given only their individual distributions:

scri = log
P (Dq ⊓ Ci)

P (Dq) · P (Ci)
= log

|Dq⊓Ci|
N

|Dq|
N

|Ci|
N

= log
|Dq ⊓ Ci| ·N
|Ci| · |Dq|

(12)
where N is the total number of instances in the KB. PMI
maximizes when Dq ⊑ Ci or Dq ⊒ Ci is true. Other measures
in this category include log likelihood ratio, information gain,
etc. A comprehensive comparison of measures in instance-
based ontology alignment can be found in [8].

We also propose an alternative approach. First we can
consider P (Ci|Dq) which represents the probability that an
instance has type Ci if we already know it has type Dq .

P (Ci|Dq) =
|Dq ⊓ Ci|

|Dq|
=

∑
Ij∈Ci∩Iq

Tα(rj)

|Dq|
(13)

Note that scri is calculated for each class Ci given query q,
and |Dq| is just a normalization factor. So the output rankings
of Ci of this approach is the same as that of AVF in Eq. 1.
From one perspective, we evaluate each Ci ∈ C with some
metric on how well Ci matches virtual class Dq . Then Eq. 13
evaluates each candidate Ci with the virtual recall of Dq . We
can also use the virtual precision: the number of instances of
Dq in Ci, i.e.

precision(Ci, Dq) =
|Dq ⊓ Ci|

|Ci|
=

∑
Ij∈Ci∩Iq

Tα(rj)

|Ci|
(14)

which is identical to Eq. 4. In combination, we propose the
virtual F-Measure approach (FM):

scri =
2 · |Dq⊓Ci|

|Ci|
· |Dq⊓Ci|

|Dq|
|Dq⊓Ci|

|Ci|
+

|Dq⊓Ci|
|Dq|

=
2 · |Dq ⊓ Ci|
|Dq|+ |Ci|

(15)

V. EVALUATION

In this section, we first introduce our experiment setup, and
then discuss the results of our proposed approaches.

A. Experiment Setup

In traditional IR, a document is either relevant or not, but
classes can be generalizations of each other, and intuitively
more specific classes should be better matches than very
generic classes. Assuming the query term q represents a virtual
concept Dq , we discuss different categories of matches to Dq

that can be specified in the ground truth. Within each case,
we define a function rel(Ci, q) that indicates the degree of
relevance of a retrieved class Ci to the query q.

1. Equivalence Match: We define rel(Ci, q) = 1 if and
only if Ci = Dq and 0 otherwise. In addition, we call an
Equivalence Match a Syntactic match if the matched class

has the same label as q , otherwise a Synonym match because
the label, as a synonym of q, indicates the same concept.

2. Partial Match: Sometimes there is no equivalent class
for q, but we may find classes very close to the virtual query
class Dq . e.g. given “composer” return d:MusicalArtist; or
given “physicist” return d:Scientist. Both examples are the
best results the system can return, because they are the upper
bounds of Dq . Similarly, there are lower bounds of Dq . Note
there can be multiple upper bounds or lower bounds. Suppose
the total number of upper bounds and lower bounds of a
query are u and l respectively. We define three types of partial
matches:

• Superclass Match if u ≥ 1 and l = 0. We assign
rel(Ci, q) = 0.8/u if Ci is one of u upper bounds of
Dq; otherwise it is 0.

• Subclass Match if u = 0 and l ≥ 1. We assign
rel(Ci, q) = 0.8/l if Ci is one of l lower bounds
of Dq; otherwise it is 0.

• Bounded Match if u ≥ 1 and l ≥ 1. We assign
rel(Ci, q) = 0.4/u if Ci is one of u upper bounds of
Dq; assign rel(Ci, q) = 0.4/l if Ci is one of l lower
bounds of Dq; otherwise it is 0.

The rel(C, q) values can be viewed as the expected utility of
translating q into C for subsequent usage. We set these values
based on rough estimations of the likelihood that such a match
can be a satisfactory search result for a user, or the likelihood
that such a match can be used to formulate a SPARQL query
to get useful answers. Note that we actually define very strict
goals for the retrieval task. In all three cases, we are asking
what the best possible match could be for the query. Thus
the superclasses of the upper bounds or subclasses of the
lower bounds do not get a partial relevance score. We also
debated whether we should give partial relevance scores to the
overlapped classes. The benefit from retrieving an overlapped
class Cx is really determined by the ratio of the common part
of Cx and Dq . Since we need human judgment to produce
ground truth for the evaluation, in order to increase the intra-
human agreement as well as reduce human effort, we simply
treat all the overlapped class as non-relevant.

For our evaluation, we call a query q a qualified query if
and only if ∃Cx in the KB, s.t. rel(Cx, q) > 0. We extract
terms from the DBPedia links to WordNet, and expand the
query set by the adding the synonyms (e.S) and hypernyms
(superclasses of terms) of the original terms from WordNet.
For hypernyms, we use not only the direct (level 1, e.H1)
hypernyms, but also hypernyms of level 2 (e.H2) and level 3
(e.H3). By expansion, we ended up with 184 candidate queries.

We implemented an interface that provides the evalua-
tors with a hierarchy, aided with reasoning on disjointness
and subsumptions. Three native English speakers provided
their judgment on whether an ontological class is a su-
per/equivalent/sub/overlapped/disjoint concept to the query.
After using majority vote, there were only 4 queries that lacked
intra-judge agreement and we dropped them from the query
set. A summary of the data set is presented in Table I. This
table categorizes the queries by two dimensions: how a query
is generated (the columns) and the ground truth of the query
(the rows).

TABLE I. SUMMARY OF QUERY DIMENSIONS

All e.O e.S e.H1 e.H2 e.H3
All 180 106 13 28 17 16

Syntactic 68 53 3 7 1 4
Synonym 26 15 2 5 2 2

Super 42 26 6 7 3 0
Sub 12 0 0 3 5 4

Bounded 32 12 2 6 6 6

To best evaluate the top-k retrieved classes, we use Dis-
counted Cumulative Gain (DCG) [9] as our metric. i.e.

DCGp = rel1 +

p∑
i=2

reli
log2 i

(16)

When a query is issued, the top p = 10 matched classes are
returned, and by using the average of relevance scores from
human judgment, we get the DCG score for this query.

B. Experiment Results

We use Additive Value Function (AVF) from Eq. 1, , an IR
method (Luc) based on Eq. 6, Jaccard (Jcd) from Eq. 11, F-
Measure (FM) from Eq. 15, and Pointwise Mutual Information
(PMI) from Eq. 12 introduced in Section 4 as our test systems.
The IR algorithm uses the state-of-the-art IR system Lucene
3.5, which uses a combined Boolean model and Vector Space
Model scoring method. We say the Luc approach is ”based on
Eq. 6” because although it is similar, the weighting and nor-
malization factors are much better tuned for standard IR tasks
(detailed in javadoc of org.apache.lucene.search.Similarity).
All of the above systems use instance texts. As we introduced
in Section 3, the texts we chose are labels (L), comments (C)
and fragments of comments (F). To compare with our proposed
approach, we also implemented two baseline systems that only
uses class labels: the string match method SL with Scaled
Levenstein (edit distance similarity), and the lexicon method
WN to match synonyms of queries provided by WordNet. To
avoid extra factors complicating the analysis, we define the
transforming function as T (rj) = rj , i.e. we directly use the IR
scores from results in the first phase, and we set a constant ratio
α = 1. Our future work includes experiments with different T
functions and variable α on different queries.

Figure 2 shows the overall comparison of average DCG
scores among the combination of the systems and text fields,
in contrast with the baselines and the ideal DCG score. Among
different systems, we find that Jcd, FM, and Luc have a better
performance than the others, and it suggests that if we use
Jcd, FM, or Luc, our proposed idea of using instance texts
can provide better class results than the syntactic matching
approaches on class labels. For different text fields, we can
see that F is the best feature in general, which is sometimes
as good as C and sometimes slightly better than C. Using L
seems to be less helpful than the other two fields. That is
because, as we discussed in Section 3, labels of instances do
not usually provide useful terms that refer to the class of that
instance. However, it is still useful if we manipulate it with
a right approach. In this experiment, we did not try to use
multiple fields as a text feature. However we have noticed
the fact that in some cases one field provides more useful
information but in other cases introduces more noise than the
other. We believe by combining these different fields, we can
expect improvement for the class retrieval problem. We will

0.3

0.4

0.5

0.6

0.7

0.8

0.9

A
v

e
ra

g
e

 D
C

G
 S

c
o

re
s

C

F

L

WN

SL

0

0.1

0.2

0.3

FM Jcd Luc PMI AVF

A
v

e
ra

g
e

 D
C

G
 S

c
o

re
s

SL

Ideal

Fig. 2. Comparison on the Overall Query Set

study this in our future work. Also, interestingly, we find the
coincidence that FM and Jcd always returns the same rankings
of classes for all the queries in this experiment. After reflection,
we realized that since we did not transform the IR score rj , we
always underestimated |Dq ⊓Ci| in Eq. 10; and thus in Eq. 11
|Dq ⊓Ci| is usually negligible when compared to |Dq|+ |Ci|;
the typical value of |Dq⊓Ci|

|Dq|+|Ci| = 10−5 ∼ 10−4 in our test set,
thus it it makes Eq. 11 highly similar to Eq. 15. Since there
is no significant difference between FM and Jcd, in the rest of
the paper we only present the results of FM.

We also compare the systems in different dimensions of
queries. Figure 3 shows the comparison on match types of
queries. We compare the four systems on the same field F, to
see how each system performs against queries with different
matching types. There are several things we want to point out.
First we want to explain the change of average ideal scores.
There are two reasons why an ideal score becomes small: (1)
there are many partial matches, which get partial scores; (2) a
partial match has too many classes as its bounds. The upper
bounds usually have only one class for each query, however
there could be a lot for the lower bounds of a query. Although
we set the sum of rel scores of these bounds to 0.8, DCG
calculation results in any class suggested at rank 3 or less
will be discounted, even if there are three or more matches
in the ground truth. This is why we see exact matches have
1.0 and Superclass matches have 0.8 as their ideal scores,
while Subclass matches have very a small ideal scores and
Bounded match is between Superclass match and Subclass
match. Secondly, we inspect the performance of baseline
systems. As we can expect, SL works perfectly on Syntactic
matches, and sometimes finds matches in Synonym match
queries thanks to the partial string match. e.g. “character”
matches to d:FictionalCharacter and “official” matches to
d:OfficeHolder. However it has difficulty finding partial string
matches in other match types, and the score drops dramatically.
Similar to SL, WN is perfect at Syntactic matches, and is very
good at Synonym matches because of the lexical expansion
on queries to match to class labels. For Superclass matches
and Bounded matches, we find that such lexical expansion
continues benefiting WN; however for Subclass matches, it
makes WN worse than SL: when we expand the query too
much, we reduce the precision while increasing the recall.
Also, we want to point out that the experiment is a little
biased towards WN, mainly because we generate the query
terms using WordNet. Lastly we compare the performances of

0.4

0.5

0.6

0.7

0.8

0.9

1

A
v

e
ra

g
e

 D
C

G
 S

c
o

rs
e SL

WN

FM_F

Luc_F

PMI_F

0

0.1

0.2

0.3

Syntactic Synonym Super Bounded Sub

A
v

e
ra

g
e

 D
C

G
 S

c
o

rs
e

PMI_F

AVF_F

Ideal

Fig. 3. Comparison on the Match Type Dimension

proposed systems on different match types. We can see that FM
is the best on Exact and Subclass matches, however Luc and
AVF become better for Superclass and Bounded matches. By
examining Eq. 1 of AVF, we can see that AVF has no factoring
for classes. While each instance adds some utility to each of its
classes, the more general classes are more likely to get larger
scores. Thus AVF always favors general classes, and effectively
finds upper bounds (usually general classes) for Superclass
and Bounded matches. On the other hand, FM has a factor
of |Ci| that penalizes general classes, thus it is less likely to
get upper bounds in these cases. Luc, however has a moderate
factoring on |Ci|, which is encoded in its normalization of
document sizes (which in our case is |Ci|), and thus exhibits
good performance over different match types.

To further inspect how the systems perform on queries that
match to general or specific classes, we divide the query set in
a third way. We define the depth of a class as the shortest path
length from this class to the top class owl:Thing in the class
hierarchy graph. For each query, we calculate the average depth
for all the bound classes (or the exact class if it is an exact
match), and round to the nearest integer. As a result, general
queries have a small average depth, while specific queries have
a larger average depth. We compare FM, Luc, PMI, and AVF
on field F in Figure 4. We can see that each system has a
clear trend of performance as the average depth increases.
Most systems achieve better class retrieval results if the query
becomes more specific, while only AVF favors the general
queries. In other words, FM, Luc, and PMI are leaning towards
returning specific classes in the KB because |Ci| all appear
in their formula as a factor discounting the general classes.
While such discounting is desirable for specific queries, we
wonder whether in some systems it is over-discounting. From
the figure we can see that Luc is most robust with the change
of generality of queries, while PMI is most sensitive to it.

VI. CONCLUSION AND FUTURE WORK

In this paper, we addressed the keyword based class
retrieval problem. Unlike traditional approaches that directly
match the query to the labels of classes, we proposed a
two-phase framework that utilizes the texts from instances
to improve class retrieval. The main challenge for the first
phase is to define which types of texts from instances we
want to use for class retrieval, and then perform a standard IR

20

30

40

50

60

70

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

A
v

e
ra

g
e

 D
C

G
 S

co
re

s

Ideal

FM_F

Luc_F

PMI_F

AVF_F

0

10

20

0

0.1

0.2

1 2 3 4 5

N
u

m
b

e
r

o
f

Q
u

e
ri

e
s

A
v

e
ra

g
e

 D
C

G
 S

co
re

s

Average Depth of Matched Classes

AVF_F

Count

Fig. 4. Comparison on the Average Depth of Matched Classes

search on this text. The second phase is to induce classes from
the instances produced by the first phase. We took different
perspectives to analyze the problem, showing that in the end
some viewpoints lead to equivalent results with regard to
ranking matching classes. A nearly 20% improvement in DCG
scores is achieved when comments or comment fragments
are used as the instance text for our proposed instance-based
approach comparing to the baseline systems. We also showed
that the F-measure, instances-as-queries, and PMI approaches
all performed better when the best matching classes were
deeper in the hierarchy, but that the additive value function
performed best for very shallow classes. For future work, we
will continue to study alternative approaches to the problem,
including new approaches for inducing the class, alternative
text fields (or combination of text fields), and the impact
of various of transforming functions. Additionally, we will
evaluate the methods on other datasets.

REFERENCES

[1] G. Tummarello, R. Delbru, and E. Oren, “Sindice.com: weaving the open
linked data,” in 6th International Semantic Web Conference and 2nd
Asian Semantic Web conference, 2007, pp. 552–565.

[2] A. Bernstein, E. Kaufmann, A. Ghring, and C. Kiefer, “Querying ontolo-
gies: A controlled English interface for end-users,” in 4th International
Semantic Web Conference and 2nd Asian Semantic Web Conference,
2005, pp. 112–126.

[3] V. Lopez, M. Pasin, and E. Motta, “Aqualog: An ontology-portable
question answering system for the Semantic Web,” in 2nd European
Semantic Web Conference, 2005, pp. 546–562.

[4] T. Tran, H. Wang, S. Rudolph, and P. Cimiano, “Top-k exploration of
query candidates for efficient keyword search on graph-shaped RDF
data,” in 25th International Conference on Data Engineering, 2009, pp.
405–416.

[5] J. Fan and B. Porter, “Interpreting loosely encoded questions,” in 19th
National Conference on Artifical Intelligence, 2004, pp. 399–405.

[6] D. Song and J. Heflin, “Automatically generating data linkages using a
domain-independent candidate selection approach,” in 10th International
Semantic Web Conference, 2011, pp. 649–664.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in 6th International
Semantic Web Conference and 2nd Asian Semantic Web Conference,
2007, pp. 722–735.

[8] A. Isaac, L. Van Der Meij, S. Schlobach, and S. Wang, “An empirical
study of instance-based ontology matching,” in 6th International Seman-
tic Web Conference and 2nd Asian Semantic Web Conference, 2007, pp.
253–266.

[9] K. Järvelin and J. Kekäläinen, “Cumulated gain-based evaluation of IR
techniques,” ACM Trans. Inf. Syst., vol. 20, pp. 422–446, October 2002.

