
Handling Cyclic Axioms in Dynamic, Web-Scale
Knowledge Bases

Yingjie Li and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308, heflin}@cse.lehigh.edu

Abstract. In recent years, there has been an explosion of publicly avail-
able Semantic Web data. In order to effectively integrate millions of
small, distributed data sources and quickly answer queries, we previously
proposed a tree structure query optimization algorithm that uses source
selectivity of each query subgoal as the heuristic to plan the query exe-
cution and uses the most selective subgoals to provide constraints that
make other subgoals selective. However, this constraint propagation is
incomplete when the relevant ontologies contain cyclic axioms. Here, we
propose an improvement to this algorithm that is complete for cyclic
axioms, yet still able to scale to millions of data sources.

Keywords: Information Integration, Cyclic Axioms, Magic Sets, Equal-
ity Reasoning

1 Introduction

In recent years, there has been an explosion of publicly available distributed
Semantic Web data. These data are often small (around 50 RDF triples per
source), which is supported by the fact that many large data sets such as DB-
pedia, GeoNames and DBLP provide dereferenceable URIs for each of their
instances; we treat each such URI as a lightweight source. In order to effectively
integrate these Semantic Web data sources and answer queries, we proposed an
inverted index mechanism and a complete non-structure query answering algo-
rithm using this index [6]. Because this index only indicates whether URIs or
literals are present in a document, the non-structure algorithm can not scale to
the real Semantic Web. Therefore, we subsequently proposed a tree-structure
query optimization algorithm that uses source selectivity of each query subgoal
as the heuristic to plan the query execution by selecting a small subset of rele-
vant sources from millions of possible sources [5]. This algorithm was designed
for OWLII ontologies (the intersection of OWL with GAV and LAV rules) -
a subset of OWL DL (Description Logic) [10]. However, it is incomplete when
cyclic axioms are considered because it does not load all relevant sources that
correspond to a query subgoal, but instead only loads those that contain the
subgoal predicate and its available variable constraints. On the other hand, each
iteration in the cyclic axiom could generate recursive variable constraints that

2 Y. Li and J. Heflin

can be propagated into the following iterations. Consequently, without the fix
point computation of cyclic axioms, the tree-structure algorithm will miss those
sources collected by applying the recursive variable constraints in each iteration.
Therefore, in order to guarantee completeness, we need special treatment for
cyclic axioms. Furthermore, this process should be dynamic because data on the
web is constantly in flux.

In DL, a cyclic axiom is one that references the same (or equivalent) classes
(or properties) on both sides of the subsumption relation. Such an axiom may
be explicit or inferred. For instance, ∃P.C ⊑ C is a cyclic axiom, where C is a
class and P is a property. P ◦ P ⊑ P is also a cyclic axiom, where P actually
stands for a transitive property. Note, rdfs:subClassOf , rdfs:subPropertyOf ,
owl:equivalentClass and owl:equivalentProperty are not cyclic unless they are
used to define a class/property to be a subclass/subproperty of itself. To the
best of our knowledge, no one has calculated how many cyclic axioms are used
in real world ontologies. However, Wang et al. [13] surveyed 1275 ontologies and
found 39 (3%) that contained a transitive property. Instance coreference is a spe-
cial case of cyclic axiom because owl:sameAs is a ubiquitous transitive property
as defined: owl:sameAs ◦ owl:sameAs ⊑ owl:sameAs. The Billion Triple Chal-
lenge 2010 data set has 6,932,678 URI resources connected by 8,711,398 unique
owl:sameAs statements [2]. The graph made of these owl:sameAs statements
consists of 2,890,027 weakly connected components. Most components are pairs
of nodes joined by owl:sameAs links. This observation implies that the typical
owl:sameAs network is small but not ignorable.

Although handling cyclic axioms is routine for typical inference algorithms,
they present challenges when querying large distributed Knowledge Bases (KBs).
Some related but different work has been proposed. Pan et al. described a fix
point computation algorithm for cyclic axioms in DLDB3 [9]. Mei et al. dis-
cussed the fix point computation of cyclic axioms on ontology query answering
over databases [8]. Urbani et al. proposed a MapReduce reasoner to deal with
the fix point computation of owl:sameAs triples [12]. Qasem et al. presented an
extended GNS algorithm to handle instance coreference [11]. Their main draw-
back is that they all precompute (lacking flexibility) rather than dynamically
compute the fix point of cyclic axioms for centralized KBs as opposed to large
distributed KBs. In addition, Lam et al. [4] proposed an approach to blocking the
expansion of cyclic axioms in order to guarantee termination of the computation
during their cycle handling. However, this process aims to resolve the unsatisfied
ontology but not for query answering over large distributed KBs. Another im-
portant approach of handling cyclic axioms is Magic Sets [1], which is a general
algorithm for rewriting logical rules to compute the fix point of cyclic axioms.
It applies the sideways information passing strategy (SIPS) and improves query
answering efficiency by restricting the computation to facts that are related to
the query. Since SIPS is basically similar to our constant constraint propagation,
we incorporate the Magic Sets theory into our algorithm. More details will be
given in Sections 2 and 3. Therefore, inspired by the traditional Magic Sets the-
ory and based on the tree-structure algorithm [5], we propose a dynamic cyclic

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 3

axiom handling algorithm for query answering over large distributed KBs. Our
main contributions are: 1) we develop a dynamic stack-based cyclic axiom han-
dling algorithm, which dynamically computes the fix point of cyclic axioms and
does instance equality reasoning (owl:sameAs inference) in a separate process,
2) we demonstrate that our algorithm can perform well on both a synthetic data
set with 20 ontologies having significant heterogeneity and a real world data set
with 73,889,151 triples distributed among 21,008,285 documents.

The remainder of the paper is organized as follows: Section 2 describes some
preliminary work. In Section 3, we describe the cyclic axiom handling algorithms
for large distributed KBs. Section 4 presents the experiments that we have con-
ducted to evaluate the proposed algorithms. Finally, in Section 5, we conclude
and discuss future work.

2 Preliminaries

In this section, we first introduce some background and the main drawback of
our tree-structure algorithm [5]. Then, we will describe the traditional Magic
Sets theory [1], especially the part related to our algorithm.

2.1 Tree-structure algorithm

In the Semantic Web, there exist many ontologies, which can contain classes,
properties and individuals. We assume that the assertions about the ontologies
are spread across many data sources, and that mapping ontologies are defined
to align the classes and properties of the domain ontologies. For convenience of
analysis, we separate ontologies (i.e. the class/property definitions and axioms
that relate them) and data sources (assertions of class membership or property
values). Formally, we treat an ontology as a set of axioms and a data source as
a set of RDF triples. A collection of ontologies and data sources constitute a
semantic web space:

Definition 1. (Semantic Web Space) A Semantic Web Space SWS is a tuple
⟨D, o, s⟩, where D refers to the set of document identifiers, o refers to an ontology
function that maps D to a set of ontologies and s refers to a source function that
maps D to a set of data sources.

We have chosen to focus on conjunctive queries, which provide the logical
foundation of many query languages (SQL, SPARQL, Datalog, etc.). A conjunc-
tive query has the form Q⟨X⟩ ← B1

(
X1

)
∧ . . . ∧ Bn

(
Xn

)
where each variable

appearing in ⟨X⟩ is called a distinguished variable and each Bi(Xi) is a query
triple pattern (QTP) ⟨si, pi, oi⟩, where si is a URI or variable, pi is a predicate
URI, and oi is a literal, URI, or variable.

Our problem is, given a SWS, how do we efficiently answer a conjunctive
query? The key point to this problem is how to prune sources that are clearly
irrelevant and focus on those that might contain useful information for answering
the query. We have shown that a term index could be an efficient mechanism for

4 Y. Li and J. Heflin

locating the documents relevant to queries over distributed and heterogeneous
semantic web resources [6]. Based on the term index, we proposed an effective
tree-structure algorithm [5]. Given a rule-goal tree that aims to encapsulate all
possible ways the required information could be represented in the sources [3] by
using the axioms in the domain ontologies and the mapping ontologies, our tree-
structure algorithm uses a bottom-up process to select sources and the selectivity
of each goal node as a heuristic to greedily optimize and plan the query execution.
The source selectivity of a selection procedure sproc for a query α is defined to
be the number of sources not selected divided by the total number of sources
available:

Selsproc(α) =
|D| − |sproc(α)|

|D|
(1)

The tree-structure algorithm always starts with the most selective QTP ,
incrementally loads the relevant sources, and uses the data from the sources to
further constrain related QTPs in order to answer queries. It is only complete
for acyclic ontologies expressed in OWLII defined below:

Definition 2. The syntax of OWLII consists of DL axioms of the forms C ⊑ D,
A ≡ B, P ⊑ D, P ≡ Q, P ≡ Q−, where C is an La class, D is an Lc class, A,
B are Lac classes and P , Q are properties. Lac, La and Lc are defined as:
• Lac is a DL language where A is an atomic class and i is an individual.

If C and D are classes and R is a property, then C ⊓D, ∃R.C and ∃R.{i} are
also classes.
• La includes all classes in Lac. Also, if C and D are classes then C ⊔D is

also a class.
• Lc includes all classes in Lac. Also, if C and D are classes then ∀R.C is

also a class.

In the presence of cyclic axioms, the tree-structure algorithm becomes incom-
plete because the cyclic axioms require that the goal node (e.g. the coreferenced
instance for owl:sameAs) be iterated over to collect sources until a fix point is
reached in order to obtain the complete answers. For instance, take the cyclic
Datalog axiom ancestor(?x, ?y) :- ancestor(?x, ?z) ∧ ancestor(?z, ?y) 1 and its
query ancestor(John, ?y). Assuming we have collected sources containing the
substitutions {?z/Bob, ?y/Andy} by using the subgoals ancestor(John, ?z) and
ancestor(?z, ?y) respectively on the term index, the tree-structure algorithm
then finishes processing this axiom because all of its subgoals have been handled
and their corresponding sources have also been collected. However, those sources
containing the recursive descendants of Bob and Andy are still relevant but will
be missed because the given axiom is not recursively applied. Consequently, the
tree-structure algorithm is clearly incomplete.

1 The property composition axiom is actually beyond OWLII’s expressivity and its
use in the paper is for the purpose of giving an example. owl:sameAs is specially
handled in Section 3.2.

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 5

2.2 Magic Sets

The Magic Sets method executes a top-down evaluation of a query by adding
rules which narrow the computation to what is relevant for answering the query.
As mentioned in section 1, it applies the SIPS strategy that describes how bind-
ings passed to a rule’s head by unification are used to evaluate the predicates in
the rule’s body. For instance, let V be an atom that has not yet been processed,
and Q be the set of already considered atoms, then a SIPS specifies a propaga-
tion V →X Q, where X is the set of the variables bound by V , passing their
values to Q.

The method is structured in four steps: rule adornment, rule generation, rule
modification and query processing. They are illustrated as follows by considering
the axiom ancestor(X,Y) :- ancestor(X,Z), ancestor(Z, Y) together with a
query ancestor(John, Y), where X, Y and Z are variables and John is a given
instance. Note, the given axiom is cyclic.

(1) Rule adornment: this phase is to materialize, by suitable adornments,
binding information for predicates. These are strings of the letters b and f , de-
noting bound or free for each argument of a predicate. First, adornments are
created for query predicates. The adorned query is ancestorbf (John, Y). In the
given rule, ancestorbf (John, Y) passes its binding information to ancestor(X,Z)
by ancestorbf (X,Y)→X ancestor(X,Z). Then, ancestor(X,Z) is adorned
ancestorbf (X,Z). Now, we consider ancestor(Z, Y), for which there is no bind-
ing information and we can still use the given axiom to expand it. Finally, we have
two resulting adorned rules: ancestorbf (X,Y) :- ancestorbf (X,Z), ancestorff (Z, Y)
and ancestorff (Z, Y) :- ancestorff (Z,W), ancestorff (W,Y), where W is a new
introduced variable.

(2) Rule generation: the adorned program is used to generate magic rules.
For each adorned predicate p in the body of an adorned rule ra, a magic rule
rm is generated such that (i) the head of rm consists of magic(p), and (ii)
the body of rm consists of the magic version of the head of ra, followed by
all of the predicates of ra which can propagate the binding on p. In our ex-
ample, two magic rules are magic ancestorff (Z, Y) :- magic ancestorbf (X,Y),
magic ancestorff (X,Z) andmagic ancestorff (Z,W) :-magic ancestorff (Z, Y),
ancestorff (W,Y).

(3) Rule modification: the adorned rules are modified by including magic
atoms generated in Step (2) in the rule bodies. The resultant rules are called mod-
ified rules. For each adorned rule whose head is h, we extend the rule body by in-
serting magic(h). In our example, ancestorbf (X,Y) :- magic ancestorbf (X,Y),
ancestorbf (X,Z), ancestorff (Z, Y) and ancestorff (Z, Y) :- magic ancestorff

(Z, Y), ancestorff (Z,W), ancestorff (W,Y) are generated.
(4) Query processing: for each adorned predicate gα of the query, (i) the magic

seed magic(gα) is asserted, and (ii) a rule g :- gα is produced. In our example, we
generate magic ancestorbf (John, Y) and ancestor(X,Y) :- ancestorbf (X,Y).

The complete rewritten program consists of the magic, modified, and query
rules. Given a non-disjunctive datalog program P , a query Q, and the rewritten
program P

′
, it is well known that P and P

′
are equivalent w.r.t. Q [1]. In

6 Y. Li and J. Heflin

Magic Sets, the adornments of Step (1) aim to cover all possible bound/free
information based on the given query and rules. Then, the generated magic
rules in the following steps can easily avoid irrelevant facts while guaranteeing
completeness during the fix point computation of the cyclic axioms. For our tree-
algorithm, as shown by [5], the constant propagation mechanism is basically the
same as the SIPS strategy, using the available binding of the rule’s head to
constrain the rule’s body. In addition, because our purpose is to collect relevant
sources by constructing boolean queries using the available constant constraint
(bound value) and the predicate instead of the real computation of the fix point,
which is actually accomplished by the Reasoner, it is sufficient for us to only
incorporate the rule adornment step into our algorithm. Then, we can easily
detect if two terms have the same predicate and adornment. If so, a cycle is
formed and we can collect only those sources that are necessary for this cycle’s
fix point computation.

3 Cyclic Axiom Handling Algorithms

In this section, we first introduce the Magic Sets-inspired dynamic cyclic axiom
handling algorithm without instance coreference. Then, we discuss the equality
reasoning (instance coreference).

3.1 Cyclic Axiom Handling

To handle cyclic axioms, there are four key points we particularly need to take
care of:

– How to represent and annotate cyclic axioms in the original rule-goal tree of
the query reformulation?

– Within each iteration of one cyclic axiom, how to compute the new gen-
erated substitutions of the given cyclic axiom that will be passed into the
next iteration? In this process, we call the set of new substitutions Relevant
Substitutions (RS).

– How to apply the RS into the selection of relevant sources by using the term
index?

– In case of multiple cyclic axioms mutually nested in one query, how to iden-
tify their correct computation order?

For the first point, as the traditional Magic Sets theory does, we adorn the
cyclic axioms by using their binding information. Then, we mark them in the
rule-goal tree. In theory, if one goal node G is detected to be one that can be
unified with its one ancestor goal node A on condition that G and A are the
same predicate and have the same adornments, then we detect a cycle C starting
with A and ending with G. However, in practice, we apply the heuristic that is
if A and G also have the same bound value, then they are not a cycle because A
and G collect the same sources by using the term index and there is no recursive

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 7

source collection. For instance, in Fig. 1, even though G1 and G2 compose a
cycle, we can skip it because both of them only collect sources containing John
and ancestor. Formally, a cycle C is denoted as C(A,G), where A is C’s starting
node and G is C’s ending node. After the cycle is marked, the rule-goal tree is
transformed into a rule-goal graph and each cyclic axiom will be converted into
one or more rule-goal graph cycles correspondingly. Essentially, a rule-goal graph
cycle means its corresponding axiom will be iteratively executed until a fix point
is reached. For the second point, in the rule-goal graph, the RS of each iteration
for one cyclic axiom essentially consists of the new generated substitutions of
the cycle distinguished variables (CDV s) of this cyclic axiom’s rule-goal graph
cycles. We define each graph cycle’s CDV s to be a set of the distinguished
variables of the starting node of this cycle. In the previous example, C’s CDV s
contains all A’s distinguished variables. At the end of each cycle iteration, we
will compute the RS by asking the reasoner and apply it into the next iteration
if the new RS is not empty. Otherwise, it means we have reached the fix point
of the current cycle. Furthermore, if the RSs of all cycles in the rule-goal graph
for one given cyclic axiom are empty, it means the fix point of this cyclic axiom
has been reached. For the third point, we use the conjunction of each value
in the RS and the goal predicate to query the term index. This helps us to
significantly reduce the number of potentially relevant sources because of the
constant constraints. For the fourth point, we will employ a cycle stack to plan
the cyclic axiom handling sequence. Each cycle can be pushed onto the stack
only if it is not already in the stack. Otherwise, we will postpone its processing.

We begin with the cyclic axiom ancestor(?x, ?y) :- ancestor(?x, ?z)∧ancestor
(?z, ?y) and its query ancestor(John, ?y) to introduce our algorithm. Fig. 1
shows its rule-goal graph. The back arrow means a cycle is marked. Each goal
node has associated adornments (bf or ff) and selectivity (the number of rele-
vant sources).

r1

ancestor
bf

(John,?y):10 G1

r2

ancestor
bf

(John,?z):10 G2 ancestor
ff
(?z,?y):100 G3

ancestor
ff
(?z,?u):100 G4 ancestor

ff
(?u,?y):100 G5

Cycle:C1

Cycle:C2

Fig. 1. An example cyclic axiom

At the beginning, using the term index, each goal node of the rule-goal graph
is initialized with their respective selectivities and bindings. In this example, we
have two cycles: C1(G3, G4) and C2(G3, G5). In our cycle detection, if a goal
node is an ending node of some cycle, we will say a cycle is detected. We use

8 Y. Li and J. Heflin

S to stand for our cycle stack. Initially, we start with the most selective node
G2 and use its substitutions to constrain its sibling G3. In this process, we start
with G3’s most selective node G4 (Here, G4 and G5 have the same selectivity
and we randomly select G4), where C1 is detected and pushed onto S. Then, we
still start with G4 in processing C1. Now, C1 is detected again and postponed
because it is also already in S. We evaluate G4 and apply its available constant
substitutions into its sibling G5, where C2 is detected and pushed onto S. Now,
S contains C1 and C2. We then start to process C2 still beginning with G4,
where C1 is detected and postponed again. Then, we evaluate G4 and apply its
substitutions to G5, where C2 is detected again and postponed. Now, we are
at the end of one iteration of C2, compute C2’s RS and apply it into the next
iteration to select relevant sources. If the new RS is empty, it means C2’s fix
point has been reached and C2 is popped. Now, S only contains C1. Then, we
go back to the context of C1. Obviously, in processing the next iteration of C1,
C2 will be met again. The previous process of C2 is repeated. Meanwhile, at the
end of each C1’s iteration, we also compute C1’s RS and apply it into the next
iteration to collect sources until the new RS is empty meaning C1’s fix point
has been reached. Finally, we finish processing C1 and C2 and correspondingly
collect all relevant sources of the given cyclic axiom.

Note, in the above process, C1(G3, G4) and C2(G3, G5) are actually redun-
dant cycles because they collect the same data sources. Therefore, we need to
avoid such repeated source collections. In our algorithm, we detect if two cycles
are redundant, which means that each node in one cycle exactly has the same
predicate and same adornments as a node in the other one and vice versa. These
redundant cycles are categorized into different redundant cycle classes and stored
into a structure called the Redundant Cycle Base (RCB). Each redundant cycle
class is a set of cycles that are redundant to each other. Redundant cycles cause
redundant source collection because they could generate the same recursive con-
stants and then collect the same sources multiple times. Therefore, during the
process of each redundant cycle, we need to check if the new recursive constant
has been used by other cycles that are redundant with the current cycle. If not,
we go ahead and start the next generation. Otherwise, we will skip this constant.
Here, we cannot handle only one cycle instead of the whole set of redundant cy-
cles because redundant cycles could appear in different positions of the rule-goal
graph and they thus could have different recursive constants generated to collect
different data sources. Then, even though C1(G3, G4) and C2(G3, G5) are both
pushed onto our cycle stack in the given example, we can avoid the repeated
source collection. In addition, for those instances that match query constants or
that are used as join conditions, we will compute their equivalence (owl:sameAs)
closure on the fly by calling our equality reasoning algorithm (Fig. 3). More de-
tails can be found in section 4.2.

The pseudo code for our cyclic axiom handling algorithms is shown in Fig.
2. The bold lines in Alg. 1 and Alg. 2 and the whole Alg. 3 are new results from
this paper. In Alg. 1, RCB stands for Redundant Cycle Base defined in the
previous paragraph. EKB is a structure that collects and organizes equivalence

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 9

Algorithm 1 Source selection

function getSourceList(rgraph, ��, q)returns a list of sources

 inputs: rgraph, a given rule-goal graph (cyclic or non-cyclic)

 ��, a list of substitutions

 q, a list of query triple patterns

1: Let frontier = leaf nodes or cycle ending nodes, static EKB = φ, static RCB = φ

 srcs[] = array of sets of sources, indexed by goal nodes

2: for each goal node n in rgraph do

3: if n has constant C and �. ����	
������
�� � ��� then

4: computeSameAs({C}, EKB)

5: for each � � �� do

6: srcs[n] = qsources(��, EKB)

7: do

8: Let n = ��� ���� � ���� !�� "|��$�%�&'()|*, p = n.parent

9: if n is a cycle ending node AND �. +�� � �+��,-
. then

10: update(n.cycle, RCB)

11: push(CycleStack, n.cycle)

12: �/�%�) 0 �/�%�) 1 234567897:;<=73>9?4"�. +��, /�, � *

13: pop(CycleStack)

14: if n is a child of an AND rule node r then

15: ��$�%A) 0 ��$�%A) 1 OptimizeANDNode"�N�OAP,

 �, ��QR��N� &S �, ��$�, T, UVW, XYW*

16: else

17: ��$�%A) 0 ��$�%A) 1 ��$�%�)

18: if n is a child of rgraph.root and rgraph is a cycle then

19: load(srcs[n], KB)

20: Let /� = askReasoner (KB, rgraph)

21: Let insts = extractJoinInsts(rsc)

22: computeSameAs(insts, EKB)

23: rgraph.RS = computeRS(rgraph.CDVs, RCB)

24: remove n and its siblings from frontier

25: if p has no descendants on frontier then

26: add p to frontier

27: while (S�&�Z�(� [\�N�OAP. �&&Z])

28: return srcs[rgraph.root]

Algorithm 2 Node optimization

function OptimizeANDNode(rgraph,on,sibs,srcs,q,EKB,RCB)return a list of sources

 inputs: rgraph, a rule-goal graph; on, a goal node

 sibs, on’s sibling nodes; srcs, an array of sets of sources

 q, a list of query triple patterns; EKB, the EquivalenceKB;

 RCB, the redundant cycle base

1: Let ORR��$� 0 ��$�%&�), load(srcs[on], KB)

2: do

3: q = T ^ &�, �� = askReasoner (KB, q)

4: Let insts = extractJoinInsts(rs)

5: computeSameAs(insts, EKB)

6: for each TZA � ��Q� do

7: srcs[qtp] = getSourceList(subgraph rooted at qtp, rs, q)

8: Let on = ��� � _!`_ ab c�!� d! a ef��g "��$�%Z)*

9: Remove on from sibs

10: ORR��$� 0 ORR��$�1��$�%&�), load"��$�%&�), VW*

11: if on is a child of rgraph.root AND rgraph is a cycle AND

 ��j� 0 k then

12: load(srcs[on], KB)

13: Let /� = askReasoner (KB, /l/
mn)

14: Let insts = extractJoinInsts(rsc)

15: computeSameAs(insts, EKB)

16: rgraph.RS = computeRS(rgraph.CDVs, RCB)

17: while (��Q� [k)

18: return allsrcs

Algorithm 3 Source selection for cyclic axioms

function getCyclicSourceList(rgraph, ��, q) returns a list of sources

 inputs: rgraph, a given rule-goal graph; ��, a list of substitutions

 q, a list of query triple patterns

1: Let ��o�$ 0 ��, firstIt = true, allsrcs = k

2: while (��o�$ [k OR firstIt)

3: ORR��$� 0 ORR��$� 1 getSourceList"�N�OAP, ��o�$, T*

4: ��o�$ = rgraph.RS

5: clear(rgraph.RS), firstIt = false

6: return allsrcs

Fig. 2. Pseudo code of handling cyclic axioms

information about instances, which will be elaborated in section 4.2. In the given
rule-goal graph rgraph, each goal node has been adorned with its own binding
information. In line 6 of Alg. 1, qsources is a source evaluation function. Given a
QTP q and a term index I, qsources(q, EKB) =

∩
c∈terms(q,EKB) I(c), which is

essentially a set of data sources that are relevant to q [5]. The EKB is used here
to collect q’s relevant sources by using both q’s constants and their equivalent
constants in EKB. In line 9, when the current most selective QTP (on) is
a cycle ending node, it means that a cycle is detected and we need to use it
to update our RCB and then push it into the cycle stack (lines 10 and 11).
Note, each goal node in the rule-goal graph can only be involved in one cycle
as an ending node because two cycles sharing one ending node is equivalent
to one cycle starting and ending at these two cycle’s root nodes that has been
annotated before. Then, we enter Alg. 3 to compute the cycle’s fix point (line
12). In Alg. 3, we repeatedly collect sources by executing Alg. 1 if the current
cycle’s RS is not empty (lines 2-5). Here, the RS are computed at the end of
each cycle iteration in lines 18-23 of Alg. 1 and lines 11-16 of Alg. 2 by extracting
the new substitutions of the current cycle’s CDV s and then passed to Alg. 3 for
the recursion use. In this process, the function extractJoinInsts(rsc) extracts
join instances from the given subsitution list rsc (line 21 in Alg. 1, and lines

10 Y. Li and J. Heflin

4 and 14 in Alg. 2). Its results are passed to our instance coreference handling
algorithm (Alg. 4) to compute the owl:sameAs closure (lines 4 and 22 in Alg. 1,
and lines 5 and 15 in Alg. 2). The function computeRS(rgraph.CDV s,RCB)
is to compute the RS of the given rule-goal graph rgraph (line 23 in Alg. 1 and
line 16 in Alg. 2). Here, for each recursive constant, we check if its redundant
cycles has used it before by using the RCB and rule out it from RS if it’s been
used. When the fix point is reached, we will return all collected sources (line 6)
and go back to Alg. 1. Then, we continue to execute line 13 in Alg. 1 to pop the
processed cyclic axiom.

3.2 Equality Reasoning

Our equality reasoning is based on the heuristic that within the term index, the
QTPs with constant constraints are often highly selective. For instance, given
two QTPs: owl:sameAs(rpi:james, ?y) and owl:sameAs(?x, ?y), the first is
much more selective than the second because of the specific constant rpi:james.
Therefore, compared to the way of loading all sources containing the owl:sameAs
predicate to compute the instance coreference closure, this way helps us signif-
icantly reduce the number of sources that are involved in the closure compu-
tation. Given a query, we call the set of all instances that are used for the
instance coreference closure computation as Relevant Instances (RI). Since we
only compute the equivalence closure of the query constant instances and the
join instances during the query solving, the cardinality of RI is often small.
In our algorithm, we design an EquivalenceKB structure (EKB) that collects
and organizes equivalence information about instances in RI. EKB essentially
supports the disjoint set data structure operations on sets of equivalence classes
of all known instances. An equivalence class in EKB is a set of instances that
are equivalent to each other (explicitly or implicitly connected by owl:sameAs).
Given an instance Ins in RI, we dynamically issue a boolean query “Ins” AND
“owl:sameAs” to our index to find all relevant sources that contain Ins and its
equivalent instances. Then, for each new discovered instance newIns, we further
find newIns’s equivalent instances and merge the equivalence classes containing
Ins and newIns. This process is repeated until no new instances are discovered.
Since the cardinality of RI is often small as stated before, the computation will
quickly and eventually terminate. Note, the equivalence class of each instance in
RI is only computed once. The algorithm pseudo code is shown in Fig. 3.

First, we start with a set of seed instance URIs (Line 2), and use the term
index to find all sources that contain each of these URIs concatenated with
the “owl:sameAs” predicate (Lines 4 and 5). Note, the seed instances are not
all coreferenced instances, but the instances in the RI of the given query and
determined by Alg. 1. Then, we extract the new equivalent URIs (Line 7), merge
the equivalence classes of the seed URIs and the new extracted URIs (Line 8),
and collect the new URIs (Line 9). This process is iteratively repeated by using
any new URIs discovered as seeds (Lines 10-11). Since there are a finite small
number of seed instances as input, and the process will only continue as long as
new URIs are discovered, the algorithm can quickly and eventually terminate.

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 11

Algorithm 4 Fix point computation for instance coreference

function computeSameAs(insts, EKB) returns a list of instances

1: inputs: insts, a list of seed URIs

2: Let ������� � �����, oldinsts = insts

3: for each uri � insts do

4: Let bquery = uri + “AND” + “owl:sameAs”

5: Let srcslist = askIndexer(bquery)

6: for each � � �������� do

7: Let sameAsPairs = �t | t � � �, ���: ������, � � � �, � � ��� y � uri"

8: updateEquivalenceKB(uri, sameAsPairs, EKB)

9: ������� � ������� # all instances URIs from sameAsPairs

10: Let newinsts = inslist – oldinsts

11: ������� � ������� # ComputeSameAs3��������, 4567

12: return inslist

Fig. 3. Pseudo code of handling instance coreference

4 Evaluation

To evaluate our algorithms, we have conducted two groups of experiments based
on a synthetic data set and a real world data set respectively. The first group
measures the cycle handling performance of our algorithm. The second group
tests the scalability and practicality of our algorithm using a subset of the real
world Billion Triple Challenge (BTC) data set. For both groups, we use a graph-
based synthetic query generator to produce a set of queries that are guaranteed
to have at least one answer each. These queries range from one to eight triples,
have at most seven variables each, and each QTP of each query satisfies the
join condition with at least one sibling QTP . All of our experiments are done
on a workstation with a Xeon 2.93G CPU and 6 GB memory running UNIX.
Our indexer component uses a term index [5] implemented with Lucene. Our
reasoner is KAON2.

4.1 Cyclic Axiom Evaluation Using a Synthetic Data Set

In this group of experiments, we conducted two separate experiments. The
first aims to compare the tree-structure algorithm with the cycle handling al-
gorithm without equality reasoning (tree-structure(cycle w/o sameAs)) to the
tree-structure algorithm without the cycle handling (tree-structure(non-cycle))
and the non-structure algorithm using a synthetic data generator that is de-
signed to approximate realistic conditions. The second aims to compare the
tree-structure algorithm with the cycle handling including the equality reason-
ing (tree-structure(cycle)) to the tree-structure algorithm without the cycle han-
dling (tree-structure(non-cycle)) and the non-structure algorithm. For both ex-
periments, first, we ensure that each generated file is a connected graph, which is
typical of most real-world RDF files. Based on a random sample of 200 semantic
web documents, we set the average number of triples in a generated document
to be 50. In order to achieve a very heterogeneous environment, we conducted
experiments with 20 ontologies, 8000 data sources, and a diameter of 2, meaning

12 Y. Li and J. Heflin

that the longest sequence of mapping ontologies between any two domain on-
tologies was 2. In this configuration, the average number of sources committing
to each ontology is 400. This configuration resulted in an index size of 75.3MB,
which was built in 21.6 seconds.

Cyclic Axioms Without Equality Reasoning In this experiment, we issued
120 random queries to our synthetic data set to measure our cycle handling
algorithm with the increasing cycle complexity, which is related to two factors:
the average number of cycles per query and the average length per cycle. In
addition, since the cycle complexity increases with the number of unconstrained
QTPs, where an unconstrained QTP is one with variables for both its subject
and object or with an rdf :type predicate paired with a variable subject, we group
our 120 test queries by the number of unconstrained QTPs (from 0 to 5). The
reason for selecting 5 as our maximum number of unconstrained QTPs is that
the non-structure algorithm can only effectively scale to queries with at most 5
unconstrained QTPs [5]. In the metrics, we computed the average query response
time and the cycle complexity. The experimental results are shown in Fig. 4.

0

5

10

15

20

25

30

35

0 1 2 3 4 5A
v

e
ra

g
e

 q
u

e
ry

 r
e

sp
o

n
se

ti
m

e
(s

)

of unconstrained QTPs

Tree-

structure(cycle

w/o sameAs)

Tree-structure

(non-cycle)

Non-structure

0

10

20

30

40

0 1 2 3 4 5

C
y

cl
e

 c
o

m
p

le
x

it
y

of unconstrained QTPs

Average # of

cycles

Average

length per

cycle

(a) (b)

Fig. 4. Cyclic axiom handling algorithm w/o owl:sameAs experimental results. Aver-
age query response time (a) and cyclic axiom complexity (b) as the number of uncon-
strained QTPs varies.

Fig. 4 (a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs with cycle complexity increas-
ing. From this result, we can see that the tree-structure (cycle w/o sameAs)
algorithm is faster than the non-structure algorithm. The reason is that uncon-
strained QTPs are typically the least selective; thus, the more unconstrained
QTPs there are, the more opportunities there are for the tree-structure(cycle
w/o sameAs) optimization algorithm to use constraints to enhance the selectiv-
ity of goals. Due to the additional cycle handling, the tree-structure (cycle w/o
sameAs) algorithm is slower than the tree-structure algorithm (non-cycle), while
the former can return more answers.

Fig. 4 (b) shows how the cyclic axiom complexity changes with the increasing
number of unconstrained QTPs. As shown in this figure, our most complex test

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 13

queries have 5 unconstrained QTPs, 10 cyclic axioms per query and 35.5 nodes
per cyclic axiom. To the best of our knowledge, this complexity is significantly
greater than most queries issued to the semantic web. Therefore, we can conclude
that our cyclic axiom handling algorithm can effectively scale to the real world.

Full Cyclic Axiom Evaluation In this experiment, we introduce the owl:sameAs
triples in our synthetic data set based on the owl:sameAs statistics of the Billion
Triple Challenge 2010 data set [7]. The ratio of sources containing owl:sameAs
is 27.1%. The number of owl:sameAs triples is 2,765 of 45,673 total triples in
8000 sources. All owl:sameAs triples are categorized into 571 equivalence classes.
The largest equivalence class contains 10 instances and the average equivalence
class is 3.7. Like the last experiment, we still issued 120 random queries to our
synthetic data set and group them by the number of unconstrained QTPs (from
0 to 5). In the metrics, we computed the average query response time and the
query completeness. The experimental results are shown in Fig. 5.

Fig. 5 (a) shows how each algorithm’s average query response time is affected
by increasing the number of unconstrained QTPs with the increasing number of
unconstrained QTPs. From this result, we can see that the tree-structure (cycle)
algorithm is faster than the non-structure algorithm. The reason is that uncon-
strained QTPs are typically the least selective; thus, the more unconstrained
QTPs there are, the more opportunities there are for the tree-structure(cycle)
optimization algorithm to use constraints to enhance the selectivity of goals.
Due to the additional cycle and owl:sameAs handling, the tree-structure (cycle)
algorithm is slower than the tree-structure algorithm (non-cycle).

Fig. 5 (b) shows the comparison of the completeness of the tree-structure (cy-
cle) algorithm, the tree-structure (non-cycle) algorithm and the non-structure
algorithm. Because the non-structure algorithm is complete [6], we take its re-
sults as ground truth. The percentage numbers in the graph are the complete-
ness of the tree-structure (non-cycle) algorithm at each point. From this result,
we can see that our tree-structure (cycle) algorithm is more complete than the
tree-structure (non-cycle) algorithm. Furthermore, it returns the same number
of answers as the non-structure algorithm, but has better query response time
than the non-structure algorithm (as shown in Fig. 5 (a)).

4.2 Scalability Evaluation Using the BTC Data Set

In this section, we evaluate our algorithm’s scalability by using a subset of the
BTC 2009 data set (much of which comes from the Linking Open Data Project
Cloud). We have chosen four collections, as summarized in Table 1, with a total
of 73,889,151 triples including owl:sameAs. Using the provenance information
in the BTC, we re-created local N3 versions of the original files from the BTC
resulting in 21,008,285 documents. The size of documents varies from roughly
5 to 50 triples each. In order to integrate these heterogeneous documents, we
manually created some mapping ontologies, primarily using rdfs:subClassOf and
rdfs:subPropertyOf axioms (these schemas do not have any meaningful align-
ments that are more complex). In this experiment, our cyclic axioms are mainly

14 Y. Li and J. Heflin

0

5

10

15

20

25

30

35

0 1 2 3 4 5A
v

e
ra

g
e

 q
u

e
ry

 r
e

sp
o

n
se

ti
m

e
(s

)

of unconstrained QTPs

Tree-

structure(cycle)

Tree-structure

(non-cycle)

Non-structure

94.4%89.1%65.7%
59.1%

68.5%

76.9%

0

10

20

30

40

50

0 1 2 3 4 5

C
o

m
p

le
te

n
e

ss

of unconstrained QTPs

Tree-structure(cycle)

Tree-structure(non-

cycle)

Non-structure

(a) (b)

Fig. 5. Full cyclic axiom handling algorithm experimental results. Average query re-
sponse time (a) and query completeness (b) as the number of unconstrained QTPs
varies.

from mapping ontologies and owl:sameAs statements. The latter creates the
most cycles. Our index construction time is around 58 hours and its size is
around 18GB. Each document takes around 10ms on average to be indexed. The
Lucene configurations are 1500MB for RAMBufferSize and 1000 for MergeFac-
tor, which are the best tradeoff between index building and searching for our
experiment.

Data Source Namespace # of Sources # of Triples

http://data.semanticweb.org/ swrc 41,974 174,816

http://sws.geonames.org/ geonames 2,324,253 14,866,924

http://dbpedia.org/ dbpedia 10,615,260 48,694,372

http://dblp.rkb-explorer.com/ akt 8,026,878 10,153,039

Total 21,008,285 73,889,151

Table 1. Data sources selected from the BTC 2009 dataset.

Because the non-structure algorithm does not refine goals with constraint
information from related goals, it cannot scale to the BTC data set. In fact,
most of our synthetic queries cannot be solved by this algorithm. For example,
consider the query Q:{⟨?x0, swrc:affiliation, “lehigh − univ”⟩.⟨?x2, akt:has −
title, “Hawkeye”⟩.⟨?x2, foaf :maker, ?x0⟩.⟨?x0, akt:full − name, ?x1⟩}. For the
non-structure algorithm, the number of sources that can potentially contribute
to solving ⟨?x2, foaf :maker, ?x0⟩ is 3,485,607, which is far too many to load into
a memory-based reasoner. Even though some reasoners can load this amount of
data as long as the system has 3GB of memory, load times are typically in the 7
hours range, which is clearly unsuitable for real-time queries. However, the tree-
structure algorithms (cycle and non-cycle) can solve this problem because the
number of sources for the same QTP becomes 114 after variable constraints are
applied. For this reason, we only compare the tree-structure family algorithms.

Handling Cyclic Axioms in Dynamic, Web-Scale Knowledge Bases 15

1

10

100

1000

10000

100000

of

answers

query

response

time

index

accesses

selected

sources

L
o

g
a

ri
th

m
ic

 s
ca

le

Tree-structure(cycle,fc)

Tree-structure(cycle,

non-fc)

Tree-structure(non-

cycle, non-fc)

Fig. 6. BTC data set experimental results.

We executed 150 synthetic queries with at most 10 QTPs. In the metrics,
we computed the average number of answers, average query response time, av-
erage number of selected sources and average index accesses of three algorithms:
the tree-structure (cycle, fc), the tree-structure (cycle, non-fc) and the tree-
structure(non-cycle, non-fc) algorithm. Here, “fc” stands for front-coding, which
is an optimization technique we applied in order to improve the query response
time of our algorithms. This is because of the fact that many URIs in the BTC
data set have the same server name, and within each such set, there are many
with the same namespace. The “fc” technique replaces each common server name
with a number. As a result, our boolean query lengths are greatly compressed.
The results are shown in Fig. 6 using a logarithmic scale. According to the results,
we can see that the tree-structure (cycle, fc) and the tree-structure (cycle, non-
fc) algorithms returned 36.8% more answers than the tree-structure (non-cycle,
non-fc) algorithm even though they have small increases in the other three met-
rics because of the additional cycle processing. However, with the front-coding
optimization, the query response time of the tree-structure (cycle, fc) algorithm
has gained around 20% improvement over the tree-structure (cycle, non-fc) al-
gorithm and is only around 5% more than the tree-structure (non-cycle, non-fc)
algorithm.

5 Conclusions and Future Work

In this paper, we proposed a stack-based fix point computation algorithm to
dynamically handle cyclic axioms including instance coreference for query an-
swering over large distributed KBs. Using this algorithm, our system can deal
with cyclic axioms on the fly and scale to queries with 8 QTPs (5 unconstrained
QTPs), 10 cyclic axioms per query and 35.5 nodes per cyclic axiom on average.
Meanwhile, it can return the same number of answers as the complete non-
structure algorithm. In addition, we have also shown that our algorithm scales
well on a real world data set, allowing randomly generated queries against 20
million heterogeneous data sources to complete in 30 seconds.

16 Y. Li and J. Heflin

Despite showing initial promise, there is still significant room for improve-
ment. First, the algorithm only focuses on conjunctive queries in SPARQL with-
out FILTER and OPTIONALs. In addition, in order to avoid the computational
challenges of higher-order logics, it does not allow variables in the predicate posi-
tion. Second, the implementation only works with OWLII. In the future, we will
explore how to extend our algorithms to support richer SPARQL queries and
more expressive ontologies such as OWL 2, and also consider how to theoreti-
cally prove the correctness of our approach. We believe that this paper provides
a major step towards a pragmatic solution for dynamic cyclic axiom handling in
querying a large, distributed, and ever changing Semantic Web.

References

1. F. Bancilhon, D. Maier, Y. Sagiv, and J. D. Ullman. Magic sets and other strange
ways to implement logic programs. In PODS, pages 1–15, 1986.

2. L. Ding, J. Shinavier, Z. Shangguan, and D. L. McGuinness. Sameas networks and
beyond: Analyzing deployment status and implications of OWL: sameas in linked
data. In International Semantic Web Conference, pages 145–160, 2010.

3. A. Y. Halevy, Z. G. Ives, J. Madhavan, P. Mork, D. Suciu, and I. Tatarinov. The
Piazza peer data management system. IEEE Trans. Knowl. Data Eng., 16(7):787–
798, 2004.

4. J. S. C. Lam, D. H. Sleeman, J. Z. Pan, and W. W. Vasconcelos. A fine-grained
approach to resolving unsatisfiable ontologies. J. Data Semantics, 10:62–95, 2008.

5. Y. Li and J. Heflin. Using reformulation trees to optimize queries over distributed
heterogeneous sources. In International Semantic Web Conference, pages 502–517,
2010.

6. Y. Li, A. Qasem, and J. Heflin. A scalable indexing mechanism for ontology-
based information integration. Web Intelligence and Intelligent Agent Technology,
IEEE/WIC/ACM International Conference on, 2010.

7. Y. Li, Y. Yu, and J. Heflin. A multi-ontology synthetic benchmark for the semantic
web. In In Proc. of the 1st International Workshop on Evaluation of Semantic
Technologies, 2010.

8. J. Mei, L. Ma, and Y. Pan. Ontology query answering on databases. In Interna-
tional Semantic Web Conference, pages 445–458, 2006.

9. Z. Pan, Y. Li, and J. Heflin. A semantic web knowledge base system that sup-
ports large scale data integration. In The Workshop on Scalable Semantic Web
Knowledge Base Systems, ISWC, 2009.

10. A. Qasem, D. A. Dimitrov, and J. Heflin. Efficient selection and integration of data
sources for answering semantic web queries. International Conference on Semantic
Computing, pages 245–252, 2008.

11. A. Qasem, D. A. Dimitrov, and J. Heflin. Towards scalable information integration
with instance coreferences, 2009.

12. J. Urbani, S. Kotoulas, J. Maassen, N. Drost, F. Seinstra, F. V. Harmelen, and
H. Bal. WebPIE: A web-scale parallel inference engine. In In: Third IEEE Interna-
tional Scalable Computing Challenge (SCALE2010), held in conjunction with the
10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid), 2010.

13. T. D. Wang, B. Parsia, and J. A. Hendler. A survey of the web ontology landscape.
In International Semantic Web Conference, pages 682–694, 2006.

