
Detecting Abnormal Semantic Web Data Using
Semantic Dependency

Yang Yu
Computer Science and Engineering Dept.

Lehigh University
Email: yay208@cse.lehigh.edu

Yingjie Li
Computer Science and Engineering Dept.

Lehigh University
Email: yil308@cse.lehigh.edu

Jeff Heflin
Computer Science and Engineering Dept.

Lehigh University
Email: heflin@cse.lehigh.edu

Abstract—Data quality is a critical problem for the Semantic
Web. We propose that the degree to which a triple deviates
from similar triples can be an important heuristic for identifying
errors. Inspired by data dependency, which has shown promise in
database data quality research, we introduce semantic dependency
to assess quality of Semantic Web data. The system first builds
a summary graph for finding candidate semantic dependencies.
Each semantic dependency has a probability according to its
instantiations and is subsequently adjusted based on the inconsis-
tencies among them. Then triples can get a posterior probability
of normality based on what semantic dependencies can support
each of them. Repeating the iteration above, the proposed
approach detects abnormal Semantic Web data. Experiments
have shown that the system is efficient on data set with 10M
triples and has more than a ten percent F-score improvement
over our previous system.

Index Terms—Detecting Abnormal Semantic Web Data; Se-
mantic Dependency

I. INTRODUCTION

Recently, data dependencies [1], [2] have been used in
promising data quality (DQ) research efforts on databases.
One of the most important data dependencies is functional
dependency (FD), which is a constraint between two sets of
attributes in a relation from a database. Given a relation R,
a set of attributes X in R is said to functionally determine
another attribute Y, also in R, (written X → Y), if and
only if each X value is associated with precisely one Y
value. Customarily, X is called the determinant set and Y the
dependent attribute. An example FD affiliation → based near
means the value of property affiliation determines the value of
property based near.

Inspired by FD, we introduce the semantic dependency
(SD) for data quality on Semantic Web data. Compared to
a FD, there are three fundamental differences in a SD (formal
definitions are given in Section IV).

1) The determinant set consists of chains of properties
instead of single attributes in database. In this paper,
the left-hand side (LHS) of a SD is called the premise
and the right-hand side (RHS) is called the conclusion.

2) The first subject value and the last object value of the
LHS property chain are the same as those of conclusion
property and other attribute values in SD do not need to
be specified.

3) To make SDs more flexible and meet the real world
situations involving noise and exceptions, we relax SD

rules to be probabilistic rather than deterministic, i.e.
each SD has a probability.

Here are some observations for the second difference. A FD
actually captures an implicit relation between the determinant
attribute value and the value of the dependent attribute. In the
above FD example, there is an implicit relation between the
value of affiliation and the value of based near, i.e. people
is located near the place where their affiliation is located.
But RDF data is abundant of relational descriptions and these
implicit relations are oftentimes stated explicitly. For instance,
a SD affiliation ◦ location → based near captures the same
semantics of the above FD. Additionally, the object value of
affiliation (also the subject value of location) needs not to
be specified. Then, the flexibility enables the SD to capture
more fundamental characteristic of this dependency, because,
in this example, if the data is about a global organization with
multiple locations, one affiliation can no more determine a
place. Such SDs are many, especially in RDF data, because
RDF data usually is instance centric and objects on a RDF
graph are often connected through multiple predicates with
other objects. Here are more examples: worksIn ◦ hasPI
→ supervisor, which means the principal investigator of a
project that a person works in usually is the supervisor of
that person and make ◦ hasTopic → interest, which means
the topic of a paper is the same as the research interest of
that author. We note that some SDs above may not always
be deterministic in real world data. This is the reason of the
third difference between a SD and a FD. Although these rules
are not deterministic, they collaboratively can give enough
confidence to detect abnormal data in many cases.

The main process of the system is as follows. First, we
assign every triple a prior probability. A straightforward as-
signment without prior knowledge would be using a uniform
distribution, i.e. all triples are equal likely (in)correct, e.g.
0.5. Another prior probability assignment based on prior
knowledge could be a function of the source that contains
the statement, e.g. all triples in a certain source have a
particular value. Next (Section II), a summary graph is built
for efficiently extracting candidate SDs and their instantiations.
Then each SD’s truth probability (Section III) is based on
the instantiations and prior probability of triples. Taking a
logic perspective, these SDs are also probabilistic axioms

over the original ontology, the next step (Section III) is to
revise the beliefs of them according to their logical relations,
i.e. inconsistencies. The final step in an iteration is to get a
score for each triple based on the number and the probability
of the SDs that could corroborate it. Then transforming the
triple score into prior probability of the next iteration until
the difference between posterior and prior probability for all
triples is less than certain threshold.

II. SEMANTIC DEPENDENCY

We first give some preliminary definitions and then intro-
duce how to efficiently find SDs in the given RDF data set.

Definition 1 A RDF graph is a structure G := (I, E,R).
Two disjoint sets I and R are instance identifiers and relation
identifiers. The set of directional edges is E ⊆ I ×R× I . Let
G be the set of all possible graphs and G ∈ G.

Definition 2 A Path c in graph G is a tuple
⟨I0, r1, I1, ..., rn, In⟩ where ∀i, 0 6 i < n, Ii ∈ I ,
(Ii, ri+1, Ii+1) ∈ E or (Ii+1, r

−
i+1, Ii) ∈ E and ∀j, i ̸= j,

Ii ̸= Ij .
Definition 3 A Joined Relation Pattern (JRP) j in graph G is

⟨r1, r2, ..., rn⟩, where ∃I0, I1, ..., In and ⟨I0, r1, I1, ..., rn, In⟩
is a Path. Inst(j,G) is the set of all such Paths in G for j.

Definition 4 A Semantic Dependency (SD) s in graph G is
X → Y , where X is a JRP, Y ∈ R and ∃p ∈ Inst(X,G),
I0 and In are the first and last instances on p respectively, s.t.
(I0, Y, In) ∈ E. LHS(s) = X and RHS(s) = Y .

A. Summary Graph

As the definition shown, the LHS of a SD is based on
a JRP. So we need to find all JRPs that can contribute to
SDs first. But enumerating all possible JRPs by computing
the instance intersections between all pair wise relations is
very time consuming and especially most of the pairs do not
have intersections. Based on this observation, we want to first
prune those pairs of sets that cannot have overlap. Since these
JRPs are similar to Basic Graph Patterns (BGP) in a SPARQL
query [3], our solution to find the premise of a SD is inspired
by the BGP optimization. We build a summary graph G′

corresponding to the original graph G. An individual in G′

represents individuals in G which are used as the domains
or ranges of same group of properties. Formally an graph G′

is a summary of a graph G if there is a mapping function
f : G → G′ that satisfies the following constraints:

1) if ⟨a, p, b⟩ ∈ E then ⟨f(a), p, f(b)⟩ ∈ E′.
2) if ⟨a′, p, b′⟩ ∈ E′ then there exists two individuals a, b ∈

I , s.t. a′ = f(a), b′ = f(b), and ⟨a, p, b⟩ ∈ E.
3) if ⟨a′, p, b′⟩ ∈ E′ and ⟨a′′, p, b′′⟩ ∈ E′, then a′ = a′′

and b′ = b′′.
The construction process can be done efficiently from A

using conventional relation database queries. The process to
construct the summary graph compresses each predicate by
merging all the domain objects and range objects into two
summary representative nodes. Meanwhile it merges all other
property links connected with nodes being merged. In the
example summary building process shown in Fig. 1, (b) is a

affiliationmademadehasTopicinterestmemberauthormade SR P3 A3 RP123madeaffiliationmemberinterestauthor ShasTopicmember made interesthasTopic ShasTopicP3
P1 A1A2R A3affiliation P2affiliationauthorauthorauthormade

(a) (b) (c)
A12P12 A123

Fig. 1. An example process building a summary graph. The summarized
predicates are highlighted and the summarized nodes are shaded. (a) The
original RDF graph. (b) The predicate author is summarized. (c) The predicate
made is summarized.

intermediate state that the node P1 and P2 are merged because
they are both used as the object value of the predicate author. If
two edges are connected through a common node on summary
graph, the two properties represented by them possibly can be
joined.

B. Finding Candidate Semantic Dependencies

In this and following subsection, we discuss how to find
and determine a SD. As we defined, one pre-condition of a
SD is that its premise and conclusion have the same subject
and object value. On the summary graph, this condition means
a JRP, a path of multiple edges on summary graph, connecting
two end points of a relation which is a direct edge on summary
graph. Then if we find such a case on summary graph, there
could be a semantic dependency whose premise is that JRP
and conclusion is the direct relation. For example, the JRP
consisting of made and hasTopic on Fig. 1 connects the two
end points of the interest. So a candidate SD could be made
◦ hasTopic → interest. Note the direction on the summary
graph only reflects the predicate used in real data, however
the semantics of the inverse relation of that predicate can also
be considered, even if the inverse property is not defined in
data. For example, hasTopic ◦ interest− → author is also
a candidate SD, though the inverse of interest may not be
defined. Based on this point, a SD is embedded as a cycle
on the undirected summary graph. Then the algorithm finding
all possible SDs is transformed to find all undirected cycles
on the summary graph and then recover the directionality of
properties in premise according to the direction of conclusion.

C. Determining a Semantic Dependency

A candidate SD is true only if it has instantiations. Since
each SD is a cycle on the summary graph consisting of its
premise and conclusion, a SD is a special JRP whose head and
tail are the same. Thus to determine a SD, we need a function
Inst() to find all the Paths that are instantiations of a JRP
in the original graph. Since an instantiation of a JRP should
satisfy all the join conditions along the chain, the selectivity of
each relation, i.e. the number of instantiations, is a good greedy
heuristic to use. In each iteration, the most selective unsolved
relation that is connected with some solved part is picked as
the target to solve. Then the instances in the connected solved
part is used as the constraint to find the instances satisfying the

target relation. After that, since the set of triples satisfying the
solved part could be shrunk, it propagates the changes over all
other parts solved previously. A new iteration begins if there
is still any unsolved part. Finally, the set of Paths based on
these triple sets are constructed and returned.

III. PROBABILITY COMPUTATION

Given the pairs of a triple and its prior probability, subsec-
tion A and B will introduce how to determine SD’s probability.
Subsection C is about computing posterior probability of
triples based on SDs.

A. Probability of Semantic Dependency

Each cycle we found on the summary graph can be in-
terpreted as multiple SDs. For example, in Fig. 1, the cycle
consisting of make, topic and interest can be interpreted as
three SDs whose conclusions are three relations respectively.
Intuitively, the conclusion of interest derived from the premise
made ◦ hasTopic is more believable than the conclusion of
made derived from interest ◦ hasTopic−. The analysis under
the intuition is that the premise is more specific than the
conclusion and there are less counter examples. Thus the
probability of SDs in the same cycle should be different and
we consider the following in its computation. First, the greater
the number of instantiations of a SD, the more believable a
SD is. Second, each instantiation of premise only, i.e. without
the conclusion part, decreases the belief of this SD, because it
can be seen as a counter example of this SD. Third, the belief
of triples involved in these instantiations affects the belief of
a SD. Therefore, taking the triples and their prior probabilities
as inputs, the probability of a SD s is defined as equation 1,
which is the sum of the probability of SD instantiations divided
by the number of premise instantiations. The common naive
Bayes assumption is used here. Since the multiplication of the
probability of triples on a Path is less than or equal to 1 and
the number of Paths in Inst(s) is less than or equal to that
in Inst(LHS(s)) due to stronger constraint on s than that on
LHS(s), the equation guarantees the probability is in [0, 1].

P (s,G, PG) =

∑
i∈Inst(s,G)

∏
t∈i,(t,p)∈PG

p

|Inst(LHS(s), G)|
(1)

B. Belief Revision

From a logic perspective, the SDs that we found are also
axioms defined over the original ontology. In a well-formed
ontology, the TBox concepts should be consistent and all
concepts and properties should be satisfiable. Thus, based on
the explicitly defined original TBox and these probabilistic
axioms we found from data, we need to do a consistency check
on them and accordingly revise the beliefs on these axioms.

Axioms that infer inconsistencies should be penalized if
they are involved in this inference, which also indirectly
rewards other axioms. Every group of inconsistent axioms
we tracked is the minimal set, i.e. no proper subset of this
group can make this inconsistency. Intuitively, if only one
possible world that has very small probability satisfies these
axioms, the degree of inconsistency of this group is very

low and the axioms in it may not need to be blamed too
much. Thus, the likelihood of possible worlds, whose set of
axioms is inconsistent, reflects the degree of inconsistency of
this group of axioms. Therefore we define that each possible
world contribute equally to the degree of inconsistency of all
groups of inconsistent axioms that it can entail. The probability
of each possible world is equal to the multiplication of the
probabilities of every axiom in it and they naturally sum to 1.

Since the inconsistency of every group is caused by axioms
in it, we partition the degree of inconsistency on each axioms
within the group. Therefore, the more groups of unsatisfiable
inference an axiom is involved in, the more penalties it will
get. The reason is that usually the majority of the world
knowledge is compatible, so it is more likely to be erroneous
when it conflicts more with other world knowledge.

C. Posterior Probability of a Triple’s Normality

The purpose of finding semantic dependencies and comput-
ing their probabilities is to compute triple scores by checking
how each triple is supported by these probabilistic axioms.
This is the last step in each iteration of the system. For
each triple, the system iterates through all the SDs whose
conclusion is the same as the predicate of this triple. If the
subject and object of this triple appear as the first and last
instance of an instantiation of the premise of a SD, this premise
instantiation can leads to the conclusion as this triple, which is
an evidence supporting this triple. The normality score of this
triple will be the sum of the probability of all these SDs. Thus
the minimum of the score is 0, i.e. no such SDs can support
it, and the largest theoretical score is the total probabilities
of a set of SDs with a certain conclusion, i.e. all these SDs
can support it. Because the scores in this range reflect certain
probability of a triple’s normality, it is sound in mathematics
that the scores can be projected onto the range [0, 1] as
probabilities by a normalization with the largest theoretical
sum. Finally, the algorithm returns the whole set of triples
and each associated with a probability and we put them in
next iteration as triples’ prior probability.

The whole iterative process of system is guaranteed to
terminate under all three possible situations about the change
of a triple’s score. First, the score is monotonic, either up or
down. Since the triple’s score is within [0, 1], in the extreme
case, a triple will finally get 1 or 0 and there is no change
any more. It will satisfy the stopping condition. Second, the
score is not monotonic but the changes decrease. That will also
satisfy the stopping condition at certain time when the change
falls into a given threshold. The last case is that the triple
score is oscillating and the changes do not decrease. It means
the system can only bound the triple score into a range, so we
take the average over previous iterations as its score which is
expected to be close to the median of the range.

IV. EXPERIMENTS

For our experiments, we selected two representative data
sets, the Semantic Web Research Corpus1 (SWRC) and DB-

1http://data.semanticweb.org/

TABLE I
SEVERAL EXAMPLE SEMANTIC DEPENDENCIES IN SWRC AND DBPEDIA.

Semantic Dependency Description
made− ◦ affiliation ◦ member ◦ maker− ◦ hasTopic → hasTopic Colleagues have papers with the same topic.

isPartOf ◦ isPartOf− ◦ hasTopic → hasTopic Papers that are in the same part of a proceeding have the same topic.
author− ◦ creator ◦ author− ◦ made− ◦ heldBy− → holdsRole A co-author of a co-author of this paper holds a role in this conference.

publisher ◦ country ◦ language → language The language of publisher’s country is the same as the work’s language.
parentCompany ◦ keyperson → owner The key person of the parent company is the owner of this company.

SWRC with 0.5 prior probabilitySWRC with 0.5 prior probabilitySWRC with 0.5 prior probabilitySWRC with 0.5 prior probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
r
e

33% Incorrect

16% Incorrect

9% Incorrect

Baseline

Fig. 2. The effect of different percentage of abnormal data in SWRC and
different credible relation threshold.

DBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior ProbabilityDBPedia with 0.5 Prior Probability

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

credible threshold

F
-m
e
a
s
u
r
e

33% Incorrect

16% Incorrect

9% Incorrect

Baseline

Fig. 3. The effect of different percentage of abnormal data in DBPedia and
different credible relation.

Pedia2. Both are real world data and on different domains.
Without identification of any types of triple for system in

advance, we wanted to test the system’s ability to differentiate
the abnormal (incorrect) data from other data. However almost
no data set has the negation of triples (recently OWL 2
added this function) and to statistically validate the system,
the abnormal triples are generated by the following process.
For each predicate, we create a domain set consisting of all the
distinct subjects of triples using this predicate and similarly a
range set consisting of all objects from them. Then a subject
and an object from each set are randomly selected to compose
a synthetic triple of this predicate. This step can ensure the
synthetic triple still conforms to the ontologies of this data set.
Four Semantic Web experts verified 200 randomly sampled
SWRC test data that all the positives are correct and all the
negatives are incorrect.

Before looking at the performance on differentiating triples,
we first show several example SDs in SWRC and DBPedia in

2http://www.dbpedia.org

TABLE II
THE EFFECT OF STOPPING THRESHOLD ON THE SYSTEM IN SWRC.

Threshold 0.001 0.005 0.01 0.05 0.1
time (hours) 5.8 3.9 2.9 1.8 0.8

iterations 28 19 13 8 3
F-measure 88.16% 87.44% 85.97% 81.71% 68.65%

Table I. In the SD on the first row, the LHS of this SD says the
following. A paper P is made by a person who has a certain
affiliation and that affiliation has a member who is the maker
of another paper which has a certain topic. The RHS of it
says that the paper P also has that topic. Thus the underlying
meaning is that colleagues often have papers with the same
topic (shown as description in the table). We note that they
may not be always true, but they do give some sense about
the usually expected context for a triple.

First, we show the system’s performance on data sets with
different percentage of abnormal data. All triples are assigned
prior probability 0.5 and the stopping threshold is set 0.01. We
tested three ratios of abnormal triples to normal triples, 1 to
10 (9%), 1 to 5 (16%) and 1 : 2 (33%). From Fig. 2 and Fig.
3, we see the loss on the best performance in each case is less
than the corresponding increase of the number of abnormal
triples, e.g. there is only 3% loss on the best F-measures from
16% to 33% abnormal triples on SWRC and 4% on DBPedia.
In addition, we compared with our previous system [4] which
is shown as a baseline in the figure. To not overwhelm readers,
we only show the baseline system on the data set with 33%
abnormal data. We see that our previous system performs at
least 10% worse than this proposed system in two data sets.

Table II shows the effect of stopping threshold on the sys-
tem. The tests are done on SWRC with 0.5 prior probability.
We see that the system can achieve good F-score within
reasonable time length and the stopping threshold does not
need to be too small.

REFERENCES

[1] P. Bohannon, W. Fan, M. Flaster, and R. Rastogi, “A cost-based model
and effective heuristic for repairing constraints by value modification,” in
SIGMOD ’05. New York, NY, USA: ACM, 2005, pp. 143–154.

[2] W. Fan, F. Geerts, X. Jia, and A. Kementsietsidis, “Conditional functional
dependencies for capturing data inconsistencies,” ACM Trans. Database
Syst., vol. 33, pp. 6:1–6:48, June 2008.

[3] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds,
“Sparql basic graph pattern optimization using selectivity estimation,” in
WWW ’08. New York, NY, USA: ACM, 2008, pp. 595–604.

[4] Y. Yu and J. Heflin, “Detecting abnormal data for ontology based infor-
mation integration.” in International Workshop on Semantic Technologies
for Information-Integrated Collaboration., Philadelphia, PA, USA. May
2011, pp. 431–438.

