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1. INTRODUCTION
Numerous problems could happen in the generation pro-

cess for Semantic Web data that is usually gathered from
heterogeneous sources by using a variety of tools [3]. Re-
cently some works [1, 2, 3, 4] began to focus on the quality
of Semantic Web data. However since the Semantic Web
represents many points of view, there is no objective mea-
sure of correctness for all Semantic Web data. Therefore, we
consider using an abnormality heuristic that could indicate
a data quality problem at the triple level. We recognize that
not all abnormal data is incorrect (in fact, in some scenarios
the abnormal data may be the most interesting data) and
thus leave it up to the application to determine how to use
the heuristic. The essential idea of this work is based on the
fact that a statement can get supporting evidence if it can be
entailed from other data. Consider the statement A advises
B: in some situations where this is true, there are also state-
ments such as A is the principal investigator of project C, B
works in C. This rule is clearly not certain. Yet, when com-
bined with other forms of evidence, it can provide support
for the advises relation.
To detect incorrect data, ideally we can directly learn

characteristics of them. But incorrect data have too many
forms. So we check if the data lacks sufficient normal pat-
terns compared to the majority of the data. Still using the
advises relation example above, we change the first state-
ment into B advises A (assuming advises is not subProper-
tyOf advises−). Then our predictability on this statement
would be low, because the context is inconsistent with a
probabilistic rule existing in many other contexts. Although
this probabilistic rule does not always hold, various rules in
context can collaboratively give certain support. Note that
there are many possible arbitrary relations that can be used
to describe any two objects on the Semantic Web, but the
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notion of significant relation used in this work is tied to the
ontologies used by the system.

2. CONTEXT BASED IDENTIFYING SIG-
NIFICANT RELATION

Formally, our problem is defined as: given the pair u of
subject s and object o, how significant is some relation p
between the pair u (written yu,p). The pair uk of subject sk
and object ok is another pair (sk != s or ok != o) having the
semantic relation p. The yu,p can be measured by the overall
similarity between the pair u and all the pairs uk (equation
1), where Up is the set of all pairs that have the relation p
and sim() is the similarity function on two contexts which
will be introduced in Section 3.3.

yu,p =
1

|Up|

∑

uk∈Up,uk!=u

sim(uk, u) (1)

We define the semantic connection as 〈r1, r2,..., rn〉, where
ri is a relation. Then the context for a pair u is defined over
a semantic connection space which is a vector space con-
sisting of all possible semantic connections (the first part in
following equation), where nu,ci means the number of in-
stantiations of the semantic connection ci (i 6 m) between
the pair u. To get more supporting evidence for a predicate
usage between two instances, for each instance, we build a
set of similar instances including itself and call this set the
expanded set. Because the semantic connections between
the two expanded sets are partially similar to the semantic
connections between original pair u, they are treated as par-
tial semantic connections between the original pair. The full
contetxt of pair u are represented below.

Vu = [nu,c1 , nu,c2 , ..., nu,cm ] + α[nū,c1 , nū,c2 , ..., nū,cm ]

= [nu,c1 + αnū,c1 , nu,c2 + αnū,c2 , ..., nu,cm + αnū,cm ]

In similarity measuring, the partial matching between dif-
ferent connections should affect the similarity between vec-
tors. Considering that, we define the similarity between
vectors as the sum of the similarities between all pairs of
connections divided by the multiplication of the magnitude
of two vectors (equation 2).

sim(u′
, u) =

1

||u||||u′||

m∑

i=1

m∑

j=1

nu,cinu′,cj s(ci, cj) (2)



s(ci, cj) = s(< ri1, ri2, ..., rin >,< rj1, rj2, ..., rjn >)

=
n∏

k=1

xik,jk (3)

where xik,jk is the similarity between property rik and rjk.

3. LEARNING PREDICATE SIMILARITY
The model we used is modified from its application in the

tag prediction problem [5]. For a pair u of subject and ob-
ject, the algorithm ranks predicates by yu,p. The objective
function (equation 4) maximizes the ranking statistic AUC
(area under the ROC-curve).

AUC(θ̂, u) =
1

|P+
u ||P

−
u |

∑

p+∈P
+
u

∑

p−∈P
−

u

h(yu,p+ − yu,p−) (4)

The h(x) is a continuous sigmoid function

h(x) =
1

1 + e−x
(5)

Then using gradient descent, AUC has to be differentiated
with respect to all model parameters and for each pair u ∈
Ps, P

+
u is the set of predicates that are already used between

the pair u while P−

u is the set of predicates that are not
used between the pair u. The overall optimization task with
respect to the ranking statistic AUC and the observed data
is then:

argmax
θ̂

∑

u∈Ps

AUC(θ̂, u) (6)

The model parameters x which is a vector of all possible
pairs of predicate similarity introduced in Section 3.3 are
updated ∂

∂x
AUC(θ̂, u). We note that this equation contains

a lot of computations that can be reused for each round, e.g.
the derivative of the similarity between two connections are
not changed within each iteration. So we use some mem-
oization techniques to save huge amount of repeated com-
putations. After each iteration, update the memoized table
once. Thus for each pair u, the x are updated as follows:

x̂← x̂+ γ ·
∂AUC

∂x
(7)

where γ is the learning rate which we have set as 0.05. This
equation means after the model learns from each observed
triple to increase the gap between the positives and the neg-
atives, it updates the model parameters, i.e. predicate sim-
ilarities, based on the learning rate.

4. EXPERIMENTS
After removal of test triples, the experiment process gen-

erally is as follows. First, the system randomly selects some
training samples and builds the contexts for them. Second,
the system learns model parameters on training samples,
given their initial values. Finally, we input test samples with
unknown predicate to the system, both positive and nega-
tive, and check the result of entailed predicate with highest
score. For positive samples, the system is expected to entail
the correct predicate, which means the system can detect
the abnormality if the predicate is incorrect. For negative
samples, it is expected that no relation between the objects
entailed by the system is above a certain threshold β and
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Figure 1: The effect of different expansion factor α

and different credible relation threshold β.

then the system report it as no relation. Thus all experi-
ments use precision, recall and F-measure.

The experiment compares the performance when the ex-
pansion factor α (Section 3.2) and the threshold β (Section
5.1) varies (shown in Figure 1). From the results, we see
that the system without expansion (α = 0) is worse than
any systems with expansion and among those the systems
with α3 (α = 0.3) and α5 (α = 0.5) are the best on two data
sets. To not overwhelm readers, the lines with other alpha
values are not shown here. The reason DBPedia needs more
context expansion is that it has less relational descriptions
for instances than SWRC. For β, the system performs the
best on both data sets when it is 0.4.

5. CONCLUSION
The essential idea of this work is to use probabilistic rules

in the context of a triple and the context of typical triples to
generate a measure of abnormality. The probabilistic rules
are learned from semantic connections between objects in
triples. To deal with the open world assumption underlying
the Semantic Web data, the system uses three mechanisms,
i.e. enriching the context, a novel context comparison mech-
anism and a learning model considering the missing triples.
The approach is mainly based on data itself without onto-
logical inference and unsupervised learns from a set of data
sources that are generally correct.
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