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ABSTRACT

To better support information integration on Semantic Web

data with varying degrees of quality, this paper proposes

an approach to detect triples which reflect some sort of er-

ror. In particular, erroneous triples may occur due to fac-

tual errors in the original data source, misuse of the ontol-

ogy by the original data source, or errors in the integra-

tion process. Although diagnosing such errors is a difficult

problem, we propose that the degree to which a triple de-

viates from similar triples can be an important heuristic

for identifying errors. We detect such “abnormal triples”

by learning probabilistic rules from the reference data and

checking to what extent these rules agree with the triples.

The system consists of two components for two types of ab-

normal relational descriptions that a Semantic Web state-

ment could have, whether accidentally or maliciously: a

statement could relate two resources that are unlikely to

have anything in common or an inappropriate predicate

could be used to describe the relation between the two re-

sources. The classification technique is adopted to learn

statistical characteristics for detecting a suspect resource

pair, i.e. there is no significant relation between the subject

and the object in the statement. For the suspect usages of

a predicate, the system learns semantic patterns for each

predicate from indirect semantic connections between the

subject / object pairs.

KEYWORDS: Detecting abnormal data, Ontology
based information integration.

1. INTRODUCTION

Low data quality (DQ) is a pressing problem for consumers

of integrated information. Having access to information

of known quality becomes critical for the well-being and

indeed for the functioning of modern information integra-

tion systems [6]. DQ research has been intensively studied

on traditional information formats, e.g. databases and web

pages. Recently some works [1, 2, 10, 12] began to focus

on the quality on Semantic Web data. Data quality is often

used synonymously with correctness [6]. However since

the Semantic Web represents many points of view, there is

no objective measure of correctness for all semantic web

data. Therefore, we consider using an abnormality heuris-

tic that could indicate a data quality problem at the triple

level. We recognize that not all abnormal data is incor-

rect (in fact, in some scenarios the abnormal data may the

most interesting data) and thus leave it up to the application

to determine how to use the heuristic. If an answer is de-

rived from abnormal data, it may be ranked lower, filtered

out, or flagged for a user to confirm or deny the quality of

data. A typical use case could be that the system attempts

to integrate or query over some new Semantic Web data

sources. These sources may be converted to use a schema

that is compatible with the system, or may already conform

to ontologies that are aligned with those used by the system.

Then the system needs certain indication of quality of these

sources in order to flag them or rank the query results. The

triple-level assessment done in this work can be easily ag-

gregated at the granularity of sources, topics or providers.

The essential idea of this work is based on the fact that a

statement can get supporting evidence if it can be entailed

from other data. Similarly, if the statement cannot be de-

rived through probabilistic entailment from other data and

the probabilistic entailment is applicable for most data that

is assumed or verified correct (e.g. the Semantic Web Re-

search Corpus (SWRC) and DBPedia1, some other reputed

sources), the statement would be considered abnormal.

Several observations show that the probabilistic entailment

1http://dbpedia.org/



by applying probabilistic rules on the context is applicable

to many Semantic Web data. First, the ontology limits data

to certain topics or domains. Thus the objects in the data

that conform to the same ontologies are usually described

and connected in certain common ways. Second, most data

have some supporting evidence in the context, e.g. the pa-

pers, colleagues, co-authors and students in the context can

support the description about a professor. Third, usually

the relation context for a pair of objects is similar to the

contexts for other pairs having the same relationship. Con-

sider the statement A advises B: in some situations where

this is true, there are also statements such as A is the prin-

cipal investigator of project C, B works in C. This rule is

clearly not certain. Yet, when combined with other forms

of evidence, it can provide support for the advises relation.

The notion of significant relation used in this work is tied

to the ontologies used by the system.

Due to misunderstanding of ontologies or other reasons,

an author could misuse an object value for a property or

misuse a property relating two URIs. Although a triple

could have these two cases at the same time, it can be eval-

uated by checking each. Currently, the system does not

consider literals and datatype properties. Corresponding

to these two types of doubtful relational descriptions in a

statement, our system has two components to solve each.

Using supporting evidence existing in data, the system only

need input a set of generally correct sources. Classification

techniques are adopted to learn the parameters of statistical

rules used to determine the existence of a significant rela-

tion. To determine which relation exists between a pair,

the system tries to find potential semantic patterns existing

in context. We demonstrate that this work is applicable to

systems integrating large Semantic Web data sets with rich

descriptions over limited vocabularies. Our experimental

results showed that the training process can be done by

sampling on a small fraction of the data set without sig-

nificantly compromising quality. Finally the runtime com-

putation for getting the context and evaluating the triple is

also efficient.

This work has the following contributions:

• a means for detecting abnormal triples without using any

foundational assessments or metadata

• a novel algorithm for constructing the context of a triple

by finding all paths between the subject and the object

• an experiment that validates the system using two real

world data sets

The paper is organized as following. Section 2 introduces

related works. Section 3 describes the process to build the

context for a triple. The detailed statistic features for deter-

mining the existence of a significant relation is described

in section 4. Section 5 discusses the semantic rules used to

derive the type of relations. The last two sections present

experimental results and the conclusion.

2. RELATEDWORK

Hartig et al. [10] proposed a framework to assess the infor-

mation quality of data sources based on provenance. Bizer

et al. [1] described a framework to filter poor informa-

tion in Web-based information systems according to user

defined quality requirements. Both of them use Seman-

tic Web techniques to focus on the subjective assessment

by users which needs human effort and may not be objec-

tive and automatic enough. Lei, et al. [12] proposed an

approach to identify data quality problems in semantic an-

notations during the creation. Sabou et al. [9] evaluate se-

mantic relations between concepts by counting the repeat-

ing (both explicit and entailed) of the similar axioms in on-

line ontologies and their derivation length. But an objective

quality assessment on existing Semantic Web instance data

is more important for ontology based information integra-

tion.

Previous instance data evaluation mainly focused on two

types of errors. First, the data usages are explicitly incon-

sistent with the syntax of the ontologies, e.g. what theW3C

RDF Validator checks. The second type of errors is logi-

cal inconsistency. They may deploy tools such as Pellet to

check logic consistency. Tao et al. [7] captured other two

potential issues through SPARQL queries of a conjunctive

combination of the presence and absence of certain triple

patterns. The first one is that an instance is used as an un-

expected individual type. For instance, the individual is

used as a subject of a property while the domain of this

property is not the type of this individual. The second is-

sue is that the usage of a property on an individual violates

the cardinality restriction. Furber et al. [2] tried to improve

the quality of literal values by using SPARQL queries to

identifying missing literals, illegal literals, etc. It is noted

that using SPARQL query syntax can only describe limited

triple patterns and the issues detected are still like logic in-

consistencies. However many more potential and general

semantic issues can not be detected.

Additionally, since our work is to check the relation be-

tween two URIs, it is related to the link prediction prob-

lem in social network analysis (SNA). Liben-Nowell [4]

and Getoor [8] both compared most popular link predic-

tion techniques. But we note that most of these techniques

are applied on the network of single or a few types of links.

Some SNA researchers began to explore the help of ontolo-

gies, e.g. [3], but they use the ontology as a dictionary to

help determine the distance between concepts mentioned



in user profiles and still only predict the single friendship

link. The link discovery in multi-relational data [11] tried

to find novel interesting paths between entities rather than

a normal link prediction.

3. CONTEXT CONSTRUCTION

Our approach is based on the context which includes enti-

ties having certain direct or indirect relationships with the

pair of instances in a triple. This section discusses how to

build the context. Four preliminary definitions are given

first.

Definition 1. A RDF graph is a structure G := (I, E, R). Two

disjoint sets I and R are instance identifiers and relationship

identifiers respectively. The set of directional edges is E ⊆
I × R × I. Let G be the set of all possible graphs and G ∈
G.

Definition 2. A path p in graph G is a tuple 〈I0, r1, I1, r2,
I2,..., rn, In〉 where ∀ i, 0≤ i < n, Ii ⊆ I, (Ii, ri+1, Ii+1) ⊆
E or (Ii+1, ri+1

−, Ii) ⊆ E and ∀ j, 0≤ j ≤ n, Ii = Ij iff. i

= j. Length(p) is defined as the number of relations in the

tuple.

Definition 3. The path set for a pair 〈s, d〉 is: PATHSG(s,
d) = {pi|pi = 〈Ii0, ri1, Ii1, ri2, Ii2,..., rin, Iin〉, pi is a path
in G and Ii0 = s, Iin = d}.

Definition 4. A context of size n for a triple 〈sub, pred, obj〉
is a function CG,n: I × R × I→ G. It produces a subgraph
S of G such that S := (I’, E’, R’), I’ ⊆ I, R’ ⊆ R, E’ ⊆ E,

and ∀e ⊆ E’, ∃p, p ∈ PATHSG(sub, obj), Length(p) ≤ n

where e is on p.

3.1. Example Contexts

We first show two small example contexts drawn from

SWRC data set (Fig. 1) to demonstrate the difference be-

tween the contexts for pairs with and without significant

relation. From the graph on the right hand side, we see

the key connections are through a node, U.S. This node is

not specially involved in this context since this node is also

connected via the same relation with many other nodes.

And few of these other nodes are involved in this subgraph.

On the contrary, in the left example, many nodes are dis-

tinctive for the pair, such as colleagues and co-authored pa-

pers, because a majority of neighbors of these colleagues

and papers are involved in the context. Specifically, all the

neighbors of the node Li-ding are involved in the actual

context for the left hand side, while less than 5% neighbors

of it are involved in the actual context for the right hand

side (Due to space, we do not show this in the figure). A
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Figure 1. Part of two contexts from SWRC data set,

the left is for James Hendler and RPI and the right is

for James Hendler and Tsinghua University. The

namespace of swrc is 〈“http://data.semanticweb.org/”〉.

similar situation exists for the node Deborah-mcguinness.

Besides the different involvement of the nodes, the predi-

cates are also used in different ways. Most predicates on the

left are used among different instances. While in the right

subgraph, each predicate is used on less instances, e.g. U.S.

is the only subject of property 9. Therefore, we can see that

the distinctiveness is not a global static concept, and instead

it is dynamic with respect to different contexts.

3.2. Construction Process

Since the context is a connection subgraph which brings

abundant information, the best way is to extract all paths

connecting the pair. Thus greedy algorithms that only pick

several connections are not suitable here. To avoid an

infinite number of paths, cycles are not allowed. Since

breadth-first search has exponential space complexity in

order to remember all visited nodes, we use depth-first

search. The parameter of this algorithm is the length limit

d, i.e. the path at most consists of d relations among d+1

different consecutive objects. To find more explicit rela-

tions, two paths are treated different if nodes are same but

the predicates are different, including the inverse property.

To the best of our knowledge, there is no well-known al-

gorithm constructing this kind of connection subgraph. Al-

gorithms for finding the shortest paths between all pairs of

vertices are not applicable here, because we want to find all

paths including non-shortest paths between a single pair.

The solutions for graph reachability are also not appropri-

ate since they only return a binary answer about the reach-

ability between two nodes and do not record the nodes and

edges connecting them. Bidirectional search could be an

option, but it would need to keep the two sets of size bd/2

each (b is the branching factor). So in addition of expan-

sion cost, the extra complexity to get their intersection is

bd/2. Thus when d is small, the time efficiency saved dur-

ing expansion is traded off by its postprocessing of sub-



 

Function getContext(front, dest, maxd, depth) returns a table DP representing the context  

 Input: front is the frontier of the current path, dest is the destination, maxd is the max length of 

a path, depth is the distance from the frontier to the source 

1 Let dist2dest = maxd – depth 

2 IF depth < maxd 

3     For each edge <front, prop, child> or <child, prop, front> 

4    IF child = dest 

5             DP[front, 1] � <dest, prop> 

6 ELSE 

7 IF STATE[child, dist2dest - 1] ≠ DONE 

8            getContext(child, dest, maxd, depth + 1) 

9             DP[front, d + 1] � <child, prop>, �d, 0 < d < maxd and DP[child, d] is not empty 

10     Set STATE[front, d] = DONE, �d, 0 < d ≤ dist2dest 

 

Figure 2. Algorithm of context construction.

graph building. Therefore, to better deal with scalability,

we create a bottom-up dynamic programming algorithm

which maintains a table recording all computed subpaths

leading to the destination. Because only the nodes that can

lead to the destination have entries in the table and only the

path that can reach the destination are recorded, the table is

sparse. And there is no postprocessing since the table is an

encoding of the result subgraph.

The algorithm shown in Fig. 2 starts from the source as

the frontier with depth zero, though there is no difference

which URI is the source. During the search, it treats the

same neighbor connected by different predicates as differ-

ent neighbors in order to get all possible connections. The

algorithm iteratively expands each neighbor of the current

node. There are several situations when expanding neigh-

bors. First (line 4-5), if this neighbor is the destination, it

records the current node as being one step from the des-

tination. Second (line 7-8), if the STATE table shows that

this neighbor with certain distance away from destination is

not expanded before, expand it. After this neighbor is ex-

panded (line 9), record the subpaths from this neighbor as

subpaths with one more step starting from the current fron-

tier. After all neighbors of the current frontier are expanded

(line 10), its state is set as DONE. The algorithm traverses

all nodes once and the DP table records every subpath con-

necting the input pair, so it correctly returns all paths be-

tween them. The extracted context subgraph will be our

primary input for two components in the system, because

it carries sufficient entities and relationships related to the

pair of instances being investigated.

4. INDICATORS OF SIGNIFICANT RELA-
TION

Having the context for a triple, this section demonstrates

the indicators of a significant relation (we call this compo-

nent SR) between the pair of instances in a triple.

4.1. Class Distinctiveness

The indicator Class Distinctiveness (CD) is used to mea-

sure the information content of each node. In information

theory, the amount of information contained in an event is

measured by the negative logarithm of the probability of

occurrence of the event. The amount of information gained

or uncertainty removed by knowing that χ has the outcome

xi is given by I(χ = xi) = -log Pr(xi). For any class c ∈ C,

the probability that χ = c is given by Pr(χ = c) = |c| / |I|,
where I is the set of all instances. Then we define the CD

as the average of the information content of all the URIs

in the subgraph (shown in Definition 5), where c(i) is the
class type of instance i. The intuition is the contexts with

more specific concepts are more precise.

Definition 5. Given a subgraph S = (I’, E’, R’) of graph G

= (I, E, R), the CD of S is defined as

CD(S) = −
1

|I ′|

∑

i∈I′

logPr(χ = c(i))

= −
1

|I ′|

∑

i∈I′

log
|c(i)|

|I|
(1)

4.2. Node Distinctiveness

The indicator Node Distinctiveness (ND) is used to mea-

sure how the nodes in the subgraph are special to this sub-

graph. A node is special to a subgraph if it is connected

more strongly to nodes in this subgraph than to those out-

side of the subgraph. A node could be the subject or the

object for a connection and be special when it is special on

either one. So for each instance, we separately compute

and average them to reflect the distinctiveness.

Definition 6. Given a graph G = (I, E, R) and an instance

U ∈ I, in-degree of U w.r.t G is defined as InG(U) = |{e|e =
(s, p, U) and e ∈ E }| , and similarly out-degree of U w.r.t

G is defined as OutG(U) = |{e|e = (U, p, o) and e ∈ E }|.

Definition 7. Given a subgraph S = (I’, E’, R’) of graph G

= (I, E, R) and an instance U ∈ I’, the Node Weight (NW)

of U w.r.t S is defined as

NW (U, S) =

1

2
(
InS(U)

InG(U)
×

InS(U)

|E′|
+

OutS(U)

OutG(U)
×

OutS(U)

|E′|
) (2)

Definition 8. Given a subgraph S = (I’, E’, R’) of graph G

= (I, E, R), the ND of S is defined as

ND(S) =
∑

i∈I′

NW (i, S) (3)



4.3. Predicate Distinctiveness

The indicator Predicate Distinctiveness (PD) is to measure

how special the predicates are with respect to this subgraph.

Definition 9. Given a graph G = (I, E, R) and a predicate

P ∈ R, the number of edges of P is EdgesG(P) = |{e|e =

(s, P, o) and e ∈ E}|; the number of distinct subjects of P

is SubG(P) = |{s|e = (s, P, o) and e ∈ E}|; the number of

distinct objects of P is ObjG(P) = |{o|e = (s, P, o) and e ∈
E}|.

Definition 10. Given a subgraph S = (I’, E’, R’) and a pred-

icate P ∈ R’, the Predicate Weight (PW) of P w.r.t S is de-

fined as

PW (P, S) =
EdgesS(P )

EdgesG(P )
×

SubS(P ) +ObjS(P )

SubG(P ) +ObjG(P )
(4)

Definition 11. Given a subgraph S = (I’, E’, R’), ri ∈ R’, 0

< i, the PD of S is defined as

PD(S) = |R′|
∑

i

(PW (ri, S)× EdgesS(ri))∑
i EdgesS(ri)

(5)

There are several considerations for designing the PD.

First, how much the percentage of usages of each predi-

cate is within the subgraph. Second, how many distinct

subjects and objects of each predicate are used in the sub-

graph. Third, the variety of subjects and objects should be

considered together. Because some predicates have very

few distinct subjects or objects but many more of the other,

like citizenship, the variety of subject values would make

it seems distinctive if we separate it from the object values.

Fourth, the sum of all the predicates are weighted based

on each predicate’s contribution to number of the edges in

the subgraph. Fifth, using the number of distinct predicates

as a factor can compensates some extreme cases. For ex-

ample, the subgraph only has two edges connecting a third

node with the target pair; these two edges are the only two

usages of a predicate and the only links in knowledge base

(KB) for these three nodes. So based on previous defini-

tion, we know PD and ND of this subgraph both be one.

However from context perspective, the context lacks a va-

riety of relations and hence sufficient evidence.

5. PATTERNS OF RELATION

After introducing the indicators of significant relations,

here we give the algorithm to check if the relation type (we

call this component RT) entailed by the context agrees with

the predicate in the triple.

5.1. Definition of Patterns

Because the entailment is on a per predicate basis and the

number of predicates is relatively small compared to that

of the instances or the triples. So the algorithm essentially

utilizes predicate co-occurrence which is often used in on-

tology alignment and coreference resolution. The idea is

that if a context shows patterns of predicate usage that also

appeared in contexts around other pairs, then the relation

between those pairs are probably similar to this relation.

The input of the algorithm is the context introduced in sec-

tion 3. The patterns for a predicate consist of predicates ex-

tracted from contexts of triples with this predicate, but they

should not be treated simply as a bag of predicates. The

first reason is that the same set of predicates would reflect

different meaning if the order of their usages is different.

Second, different join conditions among triples convey dif-

ferent interconnecting semantic patterns and relations be-

tween two end points. For instance, we have four triples:

〈A1, studentOf, B1〉, 〈B1, advisorOf, C1〉, 〈A2, studentOf,
B2〉 and 〈C2, advisorOf, B2〉. The sequence of the first two
predicates is the same as that of the last two predicates. But

A1 and C1 are connected because they are both students of

B1 while A2 and C2 are connected because A2 is academic

descendant of C2. The two relations are totally different.

Considering the points above, we define predicate patterns

below. We use traditional inverse property representation to

indicate that the triple of this predicate is joined via object

with previous triple and via subject with next triple.

Definition 12. A single pattern for a predicate pr is p(pr) =

〈r1, r2,..., rn〉, where ∃I0, I1, ..., In, such that 〈I0, r1, I1, r2,
I2,..., rn, In〉 ∈ PATHSG(I0, In) and (I0, pr, In) ∈ E.

Definition 13. The pattern template for a predicate Patt(pr)

= {(pi, wi) | pi is a single pattern for pr, wi is the number

of instantiations of this single pattern in the contexts for all

triples divided by the inverted frequency of predicates that

have this single pattern and
∑

wi = 1.}

5.2. Pattern Matching

The pattern weight is based upon the number of instantia-

tions of patterns in all triples. If we make an analogy be-

tween a predicate and a document class, the patterns and

the terms respectively, the pattern weight is similar to a

tf/idf term weight used in information retrieval. In tf/idf,

a term is weighted as the number of its usages in a docu-

ment divided by the inverted frequency of documents that

contain the term. Similarly a pattern (Definition 13) is

weighted as the number of its instantiations divided by the

inverted frequency of predicates that have this pattern.



pred(t) = max
pr∈R

∑

<pi,wi>∈Patt(pr)

wi ×match(t, pi) (6)

At runtime, we extract the patterns appearing in the context

of the triple. Then we match the extracted patterns with the

learned patterns. Equation 6 describes the criterion for the

best matched predicate for triple t. The best predicate has

the largest sum of matched pattern weights. In the equa-

tion, the match() function is used as an boolean variable:

whether the triple’s context has this pattern and wi is the

weight of this pattern. The matching complexity is Θ(mn),

where m is the number of patterns from the target triple and

n is the total number of patterns in KB.

6. RESULTS AND EVALUATION

In our experiments, we selected SWRC data set which has

100K triples and 67K resources and DBPedia infobox data

set which has 10M triples and 3M resources. They are

widely used and from different domains.

6.1. Experimental Setup

Because the reference data is assumed or verified gener-

ally correct and comprehensive, when training, the system

uses some existing triples for each predicate as posistive

examples and all other triples neither in nor can be inferred

from the original data set as incorrect. Thus this training

process basically is an unsupervised learning, since there

is no labeled data as input. When testing, for each predi-

cate, we randomly pick 200 random triples which are not

in training set as positive test examples. Because almost

no data sets have the negation of triples (recently OWL 2
2 added this function), the negative triples used in test are

generated through the following process. For each pred-

icate used in positive examples, we create a domain set

consisting of all the distinct subjects of positive example

triples using this predicate and similarly a range set consist-

ing of all objects from them. Then a subject and an object

from each set are randomly selected to compose a synthetic

triple of this predicate. This step can ensure that the syn-

thetic triple still conforms to the ontologies of this data set.

Otherwise it would be trivial to find that it is suspect. Fi-

nally if the generated triple neither is in nor can be inferred

from the original data set, it is qualified as a negative exam-

ple. To verify the reliability of test set, four Semantic Web

experts verified randomly sampled data by using a simple

interface through which they can explore relevant triples in

the knowledge base and Sindice3, a popular Semantic Web

2http://www.w3.org/TR/owl2-overview/
3http://www.sindice.com
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Figure 3. (a)(b) Results of the component SR on

determining significant relations on SWRC and

DBPedia.

search engine. The experts verified that all the positives are

correct and all the negatives are incorrect.

The training process is to establish the parameters of prob-

abilistic rules. The process to get the pattern weights used

to entail the predicate is introduced in section 5.2. To get

the weights of indicators for the existence of a significant

relation, we compute three indicator values for every train-

ing triple and put them into a classifier as feature values of

these triples. To avoid bias, we removed the original di-

rect links between the pair of objects in positive triples for

all experiments so that both positive and negative triples

are unknown to the system. We compared the performance

of several popular classifiers, such as decision tree, naive

Bayesian, kth nearest neighbor and binomial logistic re-

gression. Overall, the decision tree is the best based on the

time and performance, though others are not far behind.

The experiments are primarily designed as follows. Given

a reference data set that is generally correct and conform

to certain ontologies, we check if the system can make dis-

tinctions between ordinary triples and abnormal triples in

the test set that conform to the same ontologies by apply-

ing learned probabilistic rules on their contexts. Compo-

nent SR and RT are separated to test if each functions well.

6.2. Results

The first group of experiments show the performance on

determining the existence of significant relations when con-

text size (defined in Definition 4) varies. Both test sets

consist of equal number of positive and negative exam-

ples. The results reflect similar trend on two data sets

(Fig. 3(a)(b)). The precision does not drop much when

the context size decreases. The reason is when subgraph

is smaller or context information is fewer, the links in the

contexts of both positive and negative samples are easily

broken in negative contexts. So it’s harder for the nega-

tives to have a well clustered supporting evidence that is

necessary to be classified as positive. Thus the false pos-

itives become fewer when the context shrinks. Similarly

due to the removed links in positive contexts, some of the
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Figure 4. Impact of less complete data on the systems

ability to detect significant relations.
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Figure 5. Impact of erroneous data on the systems

ability to detect significant relations.

positive examples will lose some clues for the system to

determine positive when the context shrinks. So the num-

ber of false negative increases and the recall drops more

than precision. In addition, we notice that the improvement

on recall on SWRC data set is more than that on DBPedia

data set when context size increases. We believe the rea-

son is that SWRC data set has more relational descriptions

among instances, specifically the average density (number

of edges divided by square of number of nodes) of context

graphs on SWRC data set is around five times of that on

DBPedia data set. So it gains better clustered descriptions

when allowed path length is larger. We did not show big-

ger context size here, because when the size is bigger than

five, the number of nodes and edges in the context do not

increase much, specifically the increase on the number of

nodes from five to six is less than 10% on two data sets.

To check how the system relies on the assumption on the

reference data, the second group of experiments checks

how system performs when some random triples in refer-

ence data are removed (Fig. 4) and when reference data

has some erroneous triples (Fig. 5). Removing triples gives

two aspects of impact to the system. One is that the con-

text information becomes less for all triples and the other is

that some missing triples that the system assumes incorrect

are factual true. We see that when lots of triples are re-

moved, the system still can give decent performance. Sim-
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Figure 6. Results of the component SR using subsets of

indicators on two data sets.

ilarly when 10% of triples are incorrect, the performance

only drops several percent. Comparing Fig. 4 and 5, the

effect of erroneous triples is not as much as that of the

triples removed. The reason is that the learning is based on

the agreement among the majority of the data. Some erro-

neous triples would probably incur some patterns that oth-

ers hardly agree with, while removing triples makes many

agreed patterns disappeared or vague. Since our compo-

nent SR for determining significant relation is similar to the

link prediction in SNA, we also compared with a baseline

classifier. Among popular link predictors in SNA, such as

jaccard, katz weighted, katz unweighted, common neigh-

bors and preferential attachment [4], we observed that the

baseline using katz weighted and prefential attachment is

almost as good as using all predictors here and so the base-

line in Fig. 4 and 5 uses these two key predictors. Our

system is much better than it.

The third group of experiments is to check the component

SR with different subsets of indicators (shown in Fig. 6).

We see that only using the ND can get better performance

than the other two on SWRC, while only using the PD or

CD is better in DBPedia. Combinations of two indicators

are better than using single ones and none of them can dom-

inate the results over different domains. Finally the combi-

nation of the three is the best. It proves that three indicators

capture different aspects of a context.

In the last group of experiments (Fig. 7), we tested the com-

ponent RT to check if the probabilistic rules are useful to

determine the relation type between the pair of objects in

a triple. If the system can accurately determine the best

predicate for their relation, the system can also differenti-

ate the triple with the correct predicate from that with an

incorrect predicate. In this experiment, the positive results

from the SR are then used to evaluate the correctness of

the predicate. Thus we should note that the performance

of this component is affected by that of SR. In order to un-

derstand our system’s capabilities, we compare it to a base-
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Figure 7. Comparison between component RT and the

baseline on determining relation types on two data sets.

line system based on predicate suggestion systems. For an

instance, such systems usually find similar instances and

suggest some predicates used on those instances but not

on this instance [5]. If two objects in a triple have similar

instances respectively, the predicates connecting these two

groups of instances could also be the predicates between

them. So the baseline system is built by finding a set con-

sisting of the top kth similar instances for each object and

then picking the top ranked predicate connecting these two

sets of instances as the predicted relation. The similarity

between instances is measured by counting the number of

same predicate and object pairs. In this experiment, we are

comparing the best performance of each system when each

system’s variable changes. The figure shows that although

RT performs worse than the baseline for context sizes of

three and four, when the context size is bigger than five, it

performs better than the best configuration of the baseline.

7. CONCLUSION

We have presented an approach to detect abnormal triples

that are probably incorrect within a knowledge context.

This technique is important for both ontology based infor-

mation integration and query answering. The essential idea

is to use statistical information about the context of a triple

and the context of typical triples to generate a measure of

abnormality. One component suggests if a significant rela-

tion could exist between two resources by using quantified

indicators for the context, and the other component assesses

what the best predicate is to describe the relationship. The

technique is general, since the approach is mainly based on

the data itself without complex ontological inference and

only requires a set of unlabeled data sources that are gen-

erally correct. The experiments show that the system per-

forms well on detecting both types of abnormal triples in

data sets from different domains. In the future we plan to

account for literals and datatype properties and to integrate

the two components because they have useful information

for each other. Additionally, we will try to improve the re-

call when there are few indirect semantic connections be-

tween a pair of objects. Furthermore we will utilize our

algorithms on other problem domains, like knowledge dis-

covery and inconsistency solving.
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