
A

Domain-Independent Entity Coreference for Linking Ontology
Instances

Dezhao Song, Lehigh University
Jeff Heflin, Lehigh University

The objective of entity coreference is to determine if different mentions (e.g., person names, place names,
database records, ontology instances, etc.) refer to the same real word object. Entity coreference algorithms
can be used to detect duplicate database records and to determine if two Semantic Web instances represent
the same underlying real word entity. The key issues in developing an entity coreference algorithm include
how to locate context information and how to utilize the context appropriately. In this paper, we present a
novel entity coreference algorithm for ontology instances. For scalability reasons, we select a neighborhood
of each instance from an RDF graph. To determine the similarity between two instances, our algorithm
computes the similarity between comparable property values in the neighborhood graphs. The similarity of
distinct URIs and blank nodes is computed by comparing their outgoing links. In an attempt to reduce the
impact of distant nodes on the final similarity measure, we explore a distance-based discounting approach.
To provide the best possible domain-independent matches, we propose an approach to compute the discrim-
inability of triples in order to assign weights to the context information. We evaluated our algorithm using
different instance categories from five datasets. Our experiments show that the best results are achieved by
including both our discounting and triple discrimination approaches.

Categories and Subject Descriptors: I.2.6 [Learning]: Knowledge acquisition

General Terms: Algorithms, Experimentation, Theory

Additional Key Words and Phrases: Entity Coreference, Semantic Web, Ontology, Domain-Independence,
Discriminability

ACM Reference Format:
Dezhao Song and Jeff Heflin. 2011. Domain-Independent Entity Coreference for Linking Ontology Instances.
ACM J. Data Inform. Quality , , Article A (December 10), 29 pages.
DOI = 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

1. INTRODUCTION
The purpose of entity coreference1 is to decide if different mentions of proper nouns
refer to the same real world entity. A mention is an occurrence of a name in a docu-
ment, a web page, etc. For example, in two documents (e.g., news articles), two or more
mentions of the name James Henderson may exist and an entity coreference algorithm
can answer if they really identify the same real world person.

The entity coreference task is challenging primarily due to two general aspects: how
to locate context information for each mention and how to utilize the context in an

1Entity coreference is also referred to as deduplication [Elmagarmid et al. 2007] and entity disambiguation
[Hassell et al. 2006].

Author’s addresses: Dezhao Song and Jeff Heflin, Department of Computer Science and Engineering, Lehigh
University. 19 Memorial Drive West, Bethlehem, PA 18015.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is granted
without fee provided that copies are not made or distributed for profit or commercial advantage and that
copies show this notice on the first page or initial screen of a display along with the full citation. Copyrights
for components of this work owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, to republish, to post on servers, to redistribute to lists, or to use any component
of this work in other works requires prior specific permission and/or a fee. Permissions may be requested
from Publications Dept., ACM, Inc., 2 Penn Plaza, Suite 701, New York, NY 10121-0701 USA, fax +1 (212)
869-0481, or permissions@acm.org.
c⃝ 10 ACM 1936-1955/10/12-ARTA $10.00

DOI 10.1145/0000000.0000000 http://doi.acm.org/10.1145/0000000.0000000

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:2 Dezhao Song and Jeff Heflin

appropriate way. On one hand, we need to collect context information for those differ-
ent mentions. We can collect the context from the documents where the mentions occur.
The Internet can be another source for finding context information. On the other hand,
it is really important to utilize the context appropriately. There are various situations
that can mislead the entity coreference results. Name variations, the use of abbrevia-
tions, and misspellings can all play a role in the final results [Bilenko et al. 2003]. Also,
the collected data may come from heterogeneous sources and may not be complete. For
instance, two news articles may describe different aspects of James Henderson. One ar-
ticle may mention the name and affiliation while the other one can include his name,
date of birth, email address, etc. In addition, there may be noises in the data provided.
For example, some date information is included in the context for James Henderson
and it is treated as his date of birth; however, that date information could simply be
the date of a social event that this James Henderson attended. An entity coreference
algorithm needs to be able to deal with such problems and challenges.

Entity coreference in the Semantic Web [Berners-Lee et al. 2001] is used to detect
equivalent ontology instances. In the Semantic Web, an ontology is an explicit and
formal specification of a conceptualization, formally describing a domain of discourse.
An ontology consists of a set of terms (classes) and the relationships (class hierarchies
and predicates) between these terms. RDF is a graph based data model for describing
resources and their relationships and it is a W3C recommendation for representing in-
formation in the Web2. Two resources are connected via one or more predicates in the
form of triple. A triple, <s, p, o>, consists of three parts: subject, predicate and object.
The subject is an identifier (e.g., a URI) and the object can either be an identifier or a
literal value, such as strings, numbers, dates, etc. A URI that takes the subject place in
one triple can be the object in another; therefore, the triples themselves form a graph,
the RDF graph. In an RDF graph, an ontology instance is represented by a URI; how-
ever, syntactically distinct URIs could actually represent the same real world entity.
For instance, a person can have multiple URI identifiers in bibliographic databases
such as DBLP [Ley 2002] and CiteSeer [Giles et al. 1998] but such URIs represent the
same person; thus they are coreferent. In the Semantic Web, coreferent instances are
linked to each other with the owl:sameAs predicate and then such coreference infor-
mation can be further utilized by other aspects of Semantic Web related research, such
as Semantic Web based question answering, information integration, etc.

There has been numerous research for linking ontology instances in the Semantic
Web. Linked Data3 [Bizer et al. 2009] is one of the leading efforts in this area. Accord-
ing to the latest statistics4, there are currently 207 datasets (from various domains,
e.g., media, geography, publications, etc.) in the Linked Open Data (LOD) Cloud with
more than 28 billion triples and about 395 million links across different datasets. How-
ever, one problem of these existing owl:sameAs links is that they were generated with
algorithms that are not precise enough. As recently reported by Halpin et al. [2010],
only 50% (± 21%) of the owl:sameAs links are correct. Therefore, there emerges the
need to be able to automatically detect high quality owl:sameAs links between ontol-
ogy instances from heterogeneous datasets.

In this paper, we present a novel entity coreference algorithm to detect coreferent
ontology instances. In general, given a pair of instances of comparable classes, our al-
gorithm tells if they are coreferent, i.e., refer to the same real world entity, such as the
same person, publication, etc. In our algorithm, for a given instance, we find its neigh-
borhood graph from the entire RDF graph through an expansion process and we end

2http://www.w3.org/TR/2004/REC-rdf-concepts-20040210/
3http://linkeddata.org/
4http://www4.wiwiss.fu-berlin.de/lodcloud/state/

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:3

up having a set of paths starting from this instance and ending on another node in the
RDF graph. Each path is composed of several triples. Next, we compute the discrim-
inability of each triple, taking into account its predicate. Such discriminability is then
discounted according to the triple’s distance to the root node (the ontology instance).
With such a distance-based discounting approach and the triple discriminability, we
compute the weight of each path in the neighborhood graph (the context) of an ontol-
ogy instance. Compared to systems that only include a subset of these features, our
proposed algorithm achieves the best performance on four types of ontology instances
from two distinct datasets. Furthermore, our system outperforms state-of-the-art sys-
tems when applied to three benchmark datasets for ontology instance matching. Fi-
nally, we examine the scalability of our proposed system and adopt one preselection
technique to improve its scalability.

We organize the rest of the paper as following. Section 2 discusses related work. In
Section 3, we describe how to find the context information for an ontology instance.
Then in Section 4 we propose our triple discriminability learning scheme. We formally
present our entity coreference algorithm in Section 5, and introduce a simple filtering
technique to improve system scalability in Section 6. We show our evaluation results
in Section 7 and conclude in Section 8.

2. RELATED WORK
Researchers have been working on entity coreference and similar topics for a long time.
To solve the name disambiguation problem, researchers have developed a variety of
string matching algorithms [Bilenko et al. 2003; Cohen et al. 2003], have tried to dis-
ambiguate similar names by exploiting the similarity of their contexts [Pedersen et al.
2005], and have explored applying relevant techniques to identify name equivalences
in digital libraries [Feitelson 2004].

Some researchers have been working on entity coreference in free text. Bagga and
Baldwin [1998] employ a vector space model to do cross-document entity coreference
on person mentions in free text. They first use an in-document coreference system to
construct coreference chains within each document. A particular chain contains name
mentions and pronouns that are coreferent. Then, for cross-document coreference, they
utilize all the relevant sentences to a particular mention as context. The relevant sen-
tences are those where a mention or its in-document coreferent mentions occur. How-
ever, this approach relies on the in-document entity coreference system to give good
results in order to collect decent context information. Gooi and Allan [2004] employ
three models, the incremental/agglomerative vector space models and KL divergence,
for entity coreference on person mentions in free text. They use a window size of 55
words centered on a mention to collect its context information because their experi-
ments showed that the best results were achieved with this window size. Mann and
Yarowsky [2003] utilize unsupervised clustering over a feature space to do coreference.
They extract context information for each mention from web pages. The main differ-
ence is that they try to extract some more representative information from the web
pages, such as biographical information, marriage, parent/child relationships and so
on. Han et al. [2004] deploy two different models, the Naive Bayes classifier and the
SVM, to disambiguate author names in citations. Given a citation, their algorithm pre-
dicts if it is authored by some certain author. They designed a set of features to fit into
the classifiers; however, such features may not apply to other domains. Some graph
based approaches have been employed as well to disambiguate mentions in social net-
works [Bekkerman and McCallum 2005] and emails [Minkov et al. 2006]. Other than
pure free text, Wikipedia and Encyclopedic have also been used to find context infor-
mation [Bunescu and Pasca 2006; Cucerzan 2007]. Special types of Wikipedia pages
(e.g., disambiguation pages) and the embedded hyperlinks have been employed for ex-

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:4 Dezhao Song and Jeff Heflin

ploiting context information. Named entity recognition [David and Satoshi 2007] can
be treated as a preprocessing step for entity coreference. It recognizes different types
of mentions, such as person, organization, etc. This technique is out of the scope of this
paper.

Word sense disambiguation (WSD) and duplicate record detection in databases are
two closely related topics to entity coreference. A word can have multiple meanings
while the task of WSD is to choose the most appropriate one based upon the word’s
context [Yarowsky 1995; Zhang and Heflin 2010], such as a piece of free text. Du-
plicate record detection is to detect duplicate tuples and remove redundancies from
databases [Elmagarmid et al. 2007]. Different database records can give the same
information but are distinct in their representations. For example, different records
can represent a person’s name differently, in the forms of full name or first initial
plus family name. Dong et al. [2005] proposed an entity coreference algorithm that
exploits the relationships between different entities to improve system performance.
They collectively resolve entities of multiple types via relational evidence propagation
in dependency graphs. They applied the algorithm to multiple real world datasets and
demonstrated its effectiveness. Kalashnikov and Mehrotra [2006] proposed RELDC
(Relational-based Data Cleaning) to detect coreferent entities by analyzing entity re-
lationships. The entities and their relationships are viewed as a graph where edges
represent the relationships between entities. In order to scale to large graphs, certain
optimization techniques are employed. They demonstrated the effectiveness of their al-
gorithm on real world datasets in different domains: author, publication and movie. As
a combination of collective and relational based approaches, Bhattacharya and Getoor
[2007] developed a collective relational clustering algorithm that uses both attribute
and relational information to detect coreferent entities and their algorithm shows
certain improvement over comparison systems without their proposed techniques on
three real world datasets. Different from the methods discussed above, Ioannou et
al. [2010a] proposed a novel framework for entity coreference with uncertainty, try-
ing to detect coreferent instances at query-time. In their system, possible coreferent
relationships are stored together with the data with some probability; then a novel
probabilistic query technique is employed for answering queries by considering such
probabilities. Their system achieves better F1-scores when comparing to some offline
entity coreference systems on two datasets.

As the emergence of the Semantic Web technologies, researchers have started show-
ing interests in the entity coreference problem on the Semantic Web. Hassel, et al.
[2006] proposed an ontology-driven disambiguation algorithm to match ontology in-
stances created from the DBLP bibliography [Ley 2002] to mentions in DBWorld doc-
uments5. They use the information provided in the triples of an ontology instance to
match the context in free text. For example, if a person instance, named John Smith,
has affiliation information of Stanford University and in a DBWorld document, John
Smith and Stanford University occur close to each other, then this adds some confi-
dence that this person instance is coreferent to the name mention in the DBWorld
document. Their algorithm achieves good performance: 97.1% in precision and 79.1%
in recall. However, one problem is that the authors manually and selectively picked
some triples of the instances to use, e.g., name and affiliation. The features (e.g., co-
occurrence) were identified manually as well. For domains where it is difficult to obtain
domain expertise, it may not be feasible to decide what information would be important
and useful; and it would also be difficult to identify useful features for such domains.

Different from previous papers, other researchers developed algorithms for detecting
coreferent ontology instances. Aswani et al. [2006] proposed an algorithm for match-

5http://www.cs.wisc.edu/dbworld/

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:5

ing ontology instances. Their algorithm matches person instances from an ontology
converted from the British Telecommunications (BT) digital library, containing 4,429
publications and 9,065 author names. One of their focuses is to exploit the web to find
information to support the coreference process. For example, they issue queries with
the family name of a person instance and the title of a publication instance to search
engines and see if different author instances will finally come to have the same full
name. A positive answer gives a hint to confirm that the two person instances are
coreferent. Similar to the paper by Hassel et al. [2006], the feature set is manually
identified. Also, some features require special management. For instance, the authors
manually set up some rules to determine if a returned web page is really a person’s
publication page or simply a page from DBLP where papers of distinct authors may co-
exist. Both RiMOM [Li et al. 2009] and the system proposed by Song and Heflin [2010]
adopt a similar idea to our proposed approach where each property in an ontology is
assigned a weight. The core idea is that different properties may have quite different
impact and thus for each property, a specific weight is assigned. Combining such prop-
erty weights with string matching techniques, the similarity between two instances
is computed. Compared to Song and Heflin’s system, we consider all predicates in an
expansion chain (to be described in Section 5.2) in the context of an instance, and we
adopt a simple preselection technique to improve system scalability; also, in Section
7.6, we show that our algorithm outperforms RiMOM on three benchmark datasets.

ObjectCoref [Hu and Qu 2008] adopts a two step approach for detecting corefer-
ent instances. First, it builds an initial set of coreferent instances via reasoning,
i.e., by using the explicit semantics of owl:sameAs, owl:InverseFunctionalProperty,
owl:FunctionalProperty, owl:cardinality and owl:maxCardinality. In a second step,
ObjectCoref utilizes self-training [Zhou and Li 2010] to learn the discriminability of
property pairs based on the coreferent instances used for training. The discriminabil-
ity reflects how well each pair of properties can be used to determine whether two
instances are coreferent or not. Similarly, LN2R [Saı̈s et al. 2009], CODI [Noessner
et al. 2010] and ASMOV [Jean-Mary et al. 2009] also utilize a combination of reason-
ing based and string similarity or lexical similarity (e.g., WordNet [Miller 1995]) based
techniques for matching ontology instances. One disadvantage of reasoning based ap-
proaches is that they highly depend on the correct expressions of the ontologies. For
example, as reported by the developers of the ASMOV system, in some dataset, the
surname property was declared to be functional while two instances with different ob-
ject values of this property are said to be coreferent by the groundtruth. Ioannou et al.
[2010b] developed a system that focuses on query time duplicate instance detection on
RDF data. The key technique is to index RDF resources to enable efficient look-ups. By
adaptively determining the query to the index, similar instances to the query instance
can be efficiently retrieved.

Scalability is one important aspect of entity coreference algorithms. To scale entity
coreference systems, one solution would be to efficiently determine if an instance pair
could be coreferent by adopting some lightweight methods, which is generally called
indexing or blocking [Christen 2011]. Best Five [Winkler 2005] is a set of manually
identified rules for matching census data. However, developing such rules can be ex-
pensive, and domain expertise may not be available for various domains. Yan et al.
[2007] proposed a modified sorted neighborhood algorithm, ASN, to learn dynamically
sized blocks for each record. The records are sorted based upon a manually determined
key. For a record r, it automatically finds the next N records that might be coreferent to
r where N could vary for different records. They claimed that changing to different keys
didn’t affect the results but didn’t report any data. Marlin [Bilenko and Mooney 2003]
uses an unnormalized Jaccard similarity on the tokens between attributes by setting
a threshold to 1, which is to find an identical token between the attributes. Although

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:6 Dezhao Song and Jeff Heflin

it was able to cover all true matches on some dataset, it only reduced the pairs to con-
sider by 55.35%. BSL [Michelson and Knoblock 2006] adopted supervised learning to
learn a blocking scheme, a disjunction of conjunctions of (method, attribute) pairs. It
learns one conjunction each time to reduce as many pairs as possible; and by running
iteratively, more conjunctions would be learned to increase coverage on true matches.
However, supervised approaches require sufficient training data that may not always
be available. As reported by Michelson and Knoblock [2006], when using only 10% of
the groundtruth for training on some dataset, 4.68% fewer true matches were covered
by BSL. In order to reduce the needs of training data, Cao et al. [2011] proposed a sim-
ilar algorithm that utilizes both labeled and unlabeled data for learning the blocking
scheme. Adaptive Filtering (AF) [Gu and Baxter 2004], All-Pairs [Bayardo et al. 2007],
PP-Join(+) [Xiao et al. 2008b] and Ed-Join [Xiao et al. 2008a] are all inverted index
based approaches. AF indexes the records on their bigrams. All-Pairs is a simple index
based algorithm with certain optimization strategies. PP-Join(+) proposed a positional
filtering principle that exploits the ordering of tokens in a record. Ed-Join employed
filtering methods that explore the locations and contents of mismatching n-grams.

3. FIND NEIGHBORHOOD GRAPH
In this section, we address the problem of how to locate context information for on-
tology instances in an RDF graph. We collect paths in an RDF graph within a certain
distance to an instance (the root node) that we do coreference on. We define a path as
a sequence of nodes and predicates in an expansion chain in Equation 1:

path =< i, predicate[1], node[1], ..., predicate[n], node[n] > (1)

where i is the instance, node[i] (i > 0) is any other expanded node from the RDF graph
and predicate[i] is a predicate that connects two nodes in a path. We define a function
depth(path) that counts the number of predicates in a path. We will use the operator +
for tuple concatenation, e.g., < a, b > + < c, d >=< a, b, c, d >.

Algorithm 1 formally presents this expansion process. Starting from an instance,
we search for triples whose subject or object equals to the URI of this instance and
record those expanded triples. With the expanded triples, if the objects or subjects are
still URIs or blank nodes, we repeat this search or expansion process on them to get
further expanded triples until we reach a depth limit or a literal value, whichever
comes first. In an RDF graph, a blank node (or anonymous resource) is a node that is
neither identified by a URI nor is a literal. Blank nodes have a node ID which is limited
in scope to a serialization of a particular graph, i.e. the node node[1] in one RDF graph
does not represent the same node as a node named node[1] in any other graph. At line
17, we use p− to denote a predicate p when expanding from object to subject.

We implemented this expansion process as breadth-first search. In order to control
the number of paths generated, we set a depth limit (the maximum number of predi-
cates in a path) of 2. With this limit, we’ve discovered that it is sufficient to get enough
context information. For example, in the RKB dataset6, given a person instance, we
can find its name, affiliation, and the URIs of this person’s publication instances at
depth 1; going further to depth 2, we will have the titles, dates and the URIs of the
coauthors of these publications, etc.

With our expansion process, we end up having a set of paths for each ontology in-
stance, starting from that instance and ending with a URI or a literal value. When
ending on a blank node, we do not record that path because we cannot simply com-
pare two blank nodes and see if they are identical. However, we rely on paths that go
through blank nodes to get further literals and URIs before the stopping criteria is

6This is one of the datasets that we use for evaluation in Section 7.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:7

Algorithm 1 Neighborhood(G, i), i is an ontology instance and G is an RDF graph;
returns a set of paths for i collected from G

1. P ← all predicates in G
2. path←< i >
3. expansion set← {path}, paths← ∅
4. for all path′ ∈ expansion set do
5. last← last node in path′

6. if last is literal or (last is URI and depth(path′) = depth limit) then
7. paths← paths

∪
path′

8. else if depth(path′) < depth limit then
9. / ∗ Expand from subject to object ∗ /

10. triples←
∪

p∈P

{t|t =< last, p, o > ∧ t ∈ G}

11. for t =< s, p, o >∈ triples do
12. path new ← path′+ < p, o >
13. expansion set← expansion set

∪
path new

14. / ∗ Expand from object to subject ∗ /
15. triples←

∪
p∈P

{t|t =< s, p, last > ∧ t ∈ G}

16. for t =< s, p, o >∈ triples do
17. path new ← path′+ < p−, s >
18. expansion set← expansion set

∪
path new

19. expansion set← expansion set− path′

20. return paths

met. As illustrated in Figure 1, starting from the root (an instance), we get to node 1, 2
and 3 by searching triples that use the root node as subject/object; then we reach node
4, 5, 6 and 7 by further expanding node 2, so on and so forth. We will explain P and F
from Figure 1 in Section 4.4.

Fig. 1. Expansion Result

4. COMPUTE TRIPLE DISCRIMINABILITY
In this section, we will present our approach for learning the discriminability of RDF
triples, explaining how we could utilize the collected context information appropriately.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:8 Dezhao Song and Jeff Heflin

Generally, each triple has its own importance, reflecting its possible level of discrimina-
tion to the ontology instance from which it originally comes from7. Our discriminability
learning approach is domain independent. Given a specific dataset, without a domain-
independent and automatic discriminability learning algorithm, we need to manually
determine the importance of each triple. When disambiguating person instances, we
need to manually determine that person name can be more discriminative than birth-
place or hometown, and others like such. Our approach, given a new dataset, takes
the entire dataset (triples) as input and automatically compute the discriminabilities
regardless of the domain of that dataset, such as academia domain or some others.

4.1. Predicate Discriminability
Thinking broadly, we can measure the discriminability of a triple by only looking at
what its predicate is. As for a predicate, the more diverse value set it has, the more dis-
criminating it will be. Triples with different predicates, such as has publication date
and has author, could have different discriminabilities. Equations 2 and 3 show how
we compute predicate discriminability:

Perpi =
|set of distinct objects of pi|
|set of triples that use pi|

(2)

where Perpi represents a percentage value for predicate pi, which is the size of pi’s
distinct object value set divided by its number of occurrences in the entire dataset. We
record the largest percentage value over all predicates as Permax. We then normalize
such values so that the most discriminating predicate has a discriminability of 1. The
normalization is shown in equation 3:

Ppi =
Perpi

Permax
(3)

where Ppi is the predicate discriminability for predicate pi.
Depending on what category of instances is being compared, a predicate may be used

in the subject-to-object direction or reversely. A predicate that discriminates well in one
direction may not do well in the other. This is related to how we expand an instance to
collect neighborhood triples in Section 3. Basically, when we do the expansion, we use
a URI both as the subject and the object, so a predicate has different discriminabilities
to the two directions.

To clearly represent discriminabilities, for a given predicate pi, we use Perpi and
Per−pi

to denote the percentage values to the object and subject direction respectively;
then the predicate discriminabilities to the two directions are denoted as Ppi and P−

pi

respectively. Equations 2 and 3 compute predicate discriminabilities to the object di-
rection. The discriminabilities to the subject direction can be computed in the same
manner by replacing appropriate variables.

Here, we show how to calculate our predicate discriminability with two concrete
examples from the RKB dataset. 6,313,274 triples use the predicate has author (with
domain of publication class and range of person class); among these triples, there are
3,986,181 distinct object values and 2,515,439 distinct subject values. From Equation
2, we have:

Perhas author =
3, 986, 181

6, 313, 274
= 0.63, P er−has author =

2, 515, 439

6, 313, 274
= 0.398 (4)

7This is related to finding the neighborhood graph for an instance as introduced in Section 3.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:9

Because the maximum percentage values to both directions (Permax and Per−max) are
both 1 in this dataset, based on Equation 3, we have:

Phas author =
Perhas author

Permax
=

0.63

1
= 0.63, (5)

P−
has author =

Per−has author

Per−max
=

0.398

1
= 0.398 (6)

So, when disambiguating between publication instances, having a common author can
be more discriminative than having a common publication when doing coreference on
person instances. Another example is the has publication year predicate (a datatype
property). 2,973 triples use this predicate with 152 distinct object values. So, we have:

Perhas publication year =
152

2, 973
= 0.05 (7)

Based on Equation 3, we have:

Phas publication year =
Perhas pub year

Permax
=

0.05

1
= 0.05 (8)

The intuition behind our predicate discriminability is that the discriminability of a
triple is determined by its predicate. And such discriminability will then contribute
to the entity coreference process. For example, if two publications happen to have the
triples with the same object value via predicate has publication year that only has a
weight of 0.05, then such a coincidence does not really add much value to determine
if they are coreferent; however, predicate has author shows a much higher discrim-
inability to the object direction (0.63), so that having equivalent object values for this
predicate (having the same author) will give a better idea that these two publications
be coreferent.

4.2. Predicate Discriminability Overestimation
Currently, when counting the size of the distinct object/subject value sets, we assume
that if any two objects/subjects are syntactically distinct, then they truly represent
different things. However, they could actually represent the same real world entity.
With such unknown coreferent objects/subjects, we are actually overestimating the
discriminability. But if we assume that for every predicate such unknown coreferent
relationships occur uniformly throughout the dataset, we actually overestimate all
predicates by the same proportion. Thus our current approach still gives reasonable
discriminability.

Figure 2 gives an example of this situation. We have two predicates: PredicateA

(Instance1, PredicateA, Object1)

(Instance2, PredicateA, Object2)

(Instance3, PredicateA, Object3)

(Instance4, PredicateA, Object2)

(Instance5, PredicateA, Object4)

(Instance6, PredicateA, Object5)

(Instance1, PredicateB, Object6)

(Instance2, PredicateB, Object7)

(Instance3, PredicateB, Object8)

(Instance4, PredicateB, Object9)

(Instance5, PredicateB, Object10)

(Instance6, PredicateB, Object11)

PredicateA PredicateB

Fig. 2. Predicate Discriminability Overestimation

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:10 Dezhao Song and Jeff Heflin

(PA) and PredicateB (PB) from the same dataset; each of them is used by six triples as
listed in the two boxes respectively. Assuming Permax is 1 for this dataset, based on
Equations 2 and 3, to the object direction, we can calculate their discriminability:

PPA
=

PerPA

Permax
=

5

6
= 0.83, PPB

=
PerPB

Permax
=

6

6
= 1 (9)

Now, if we assume the underlined objects are actually coreferent, the predicate dis-
criminability of these two predicates will change to:

PPA
=

PerPA

Permax
=

3

6
= 0.5, PPB

=
PerPB

Permax
=

4

6
= 0.67 (10)

In this case, we are overestimating the predicate discriminability for both predi-
cates due to unknown coreferent instances. In our unsupervised method for learning
predicate discriminability, it is difficult to consider such unknown coreferent informa-
tion; therefore, we make the assumption that we overestimate the discriminability
for every predicate by about the same proportion. From our current experiments (to
be presented in Section 7.2), adopting our proposed predicate discriminability does
significantly improve system performance compared to comparison systems (to be in-
troduced in Section 7.1.3) that don’t use it.

4.3. Missing Value
Currently, we don’t consider missing values when calculating our predicate discrim-
inability values. A version of Equation 2 that takes missing values into account is
shown in Equation 11:

Per′pi
=

|set of distinct objects of pi|+ 1

|triples that use pi|+ |instances that should use pi but don′t|
(11)

where Per′pi
represents the percentage value for predicate pi. Compared to Equa-

tion 2, the additional “1” in the numerator represents null value and the second part
(Missing = |instances that should use pi but don

′t|) in the denominator is the number
of instances that should have a value for predicate pi but actually don’t. The problem
here is how to determine Missing. In an ontology, a predicate may not have its domain
declared thus making it difficult to calculate Missing. Another option is to compute
predicate discriminability with respect to each individual class as shown in Equation
12:

Per′(C,pi)
=

|set of distinct objects of pi|+ 1

|triples that use pi|+ |instances of C that don′t use pi|
(12)

where C is an ontology class. With this option, we compute the discriminability of all
predicates for each individual class; thus a predicate may have different discriminabil-
ities when paired with different classes. As shown in Figure 1, during expansion, we
need to determine the discriminability of an edge (a predicate). However, the nodes to
expand (e.g., the root node in Figure 1) may not have class types declared or may have
multiple types; therefore one problem here is that we may not be able to decide which
discriminability to use during the expansion process. For instance, in the RKB dataset,
a person instance is also declared to be an owl:Thing, Legal-Agent and Generic-Agent.
For predicate pi, although we could compute its discriminability by Equation 12 with
respect to each of these classes, it is difficult to decide which one to use when seeing
an edge of pi. In this paper, we didn’t implement these two alternate options due to the
problems discussed above when applying them generally to Semantic Web data. For
future work, we will explore approaches for calculating predicate discriminability by
appropriately taking into account missing values.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:11

4.4. Weighted Neighborhood Graph
With triple discriminability and the context information, we assign each path in the
neighborhood graph a weight, indicating its importance to the root node. The weights
combine two elements, the learned discriminability and a discount value.

As previously shown in Figure 1, P1 and P2 represent the discriminabilities for the
two triples ending on node 2 and 5 respectively. We also add another parameter, called
factor, to each node, indicating how important a node is to its father node. For example,
in Figure 1, F1 is the factor of node 2 to the root node and its value is 1/3 because three
triples get expanded from the root. Each of the three nodes (node 1, 2 and 3) only
represents one-third of their father node conceptually. The underlying semantics of
this factor is to portion out the importance of one node to its expanded nodes in an
equal manner.

With the factors and triple discriminability, we adopt a distance based discounting
approach to assign weights to paths in the neighborhood graph, as calculated by Equa-
tion 13:

Wpath =

depth(path)∏
i=1

Pi ∗ Fi (13)

where the function depth counts the number of triples or predicates in a path; Pi and
Fi represent the discriminability and factor for each triple in the path respectively.
The intuition here is that as we expand further in the RDF graph, more noisy data
could be introduced. In order not to overwhelm the context, the discriminability of
each expanded triple should be appropriately adjusted. We call this a distance-based
discounting approach.

5. ENTITY COREFERENCE ALGORITHM
With the weighted neighborhood graph, in this section, we formally present our entity
coreference algorithm for detecting equivalent ontology instances.

5.1. Algorithm Design
Algorithm 2 presents the pseudo code of our entity coreference algorithm for ontol-
ogy instances. In this description, a and b are two ontology instances; path.node[last]
returns the last node of a path; the function PathComparable tells if two paths are
comparable; Sim is a string matching algorithm that computes the similarity score
between two literals [Cohen et al. 2003].

The essential idea of our entity coreference algorithm is that we adopt the bag-of-
paths approach to compare paths between ontology instances. Information retrieval
systems often treat a document as a bag-of-words [Lewis 1998] where the text is
treated as an unordered collection of words. Analogously, we treat an instance as a
bag-of-paths. Through the expansion process (see Section 3), for an instance, we find a
collection of paths for it without considering the ordering of the paths. For each path
(m) of instance a, we compare its last node to that of every comparable path of instance
b and choose the highest similarity score, denoted as path score. Also, we need to de-
termine the weight of this path score. Here, when considering the weight, we take into
account both the weight (Wm) of path m and the weight (Wn′) of the path n′ of instance
b that has the highest similarity to path m. Then we use the average of Wm and Wn′

as the path weight for path m. We then repeat the process for every path of instance
a. With the pairs of (path score, path weight) for a pair of instances, we calculate their
weighted average in order to have the final similarity score between the two instances.
The same process is repeated for all pairs of ontology instances of comparable cat-

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:12 Dezhao Song and Jeff Heflin

Algorithm 2 Compare(Na, Nb), Na and Nb are the context for instances a and b col-
lected with Algorithm 1 respectively; returns the similarity between a and b

1. total score← 0, total weight← 0
2. for all paths m ∈Na do
3. if ∃path n∈Nb, PathComparable(m,n) then
4. path score← 0, path weight← 0
5. if m.node[last] is literal then
6. path score← maxn′∈Nb,PathComparable(m,n′) Sim(m.node[last], n′.node[last])
7. /* path n′ has the highest score with m */
8. path weight← (Wm +Wn′)/2
9. else if m.node[last] is URI then

10. if ∃path n′∈Nb, PathComparable(m,n′), m.node[last] = n′.node[last] then
11. path score← 1
12. /* path n′ has identical end node with m */
13. path weight← (Wm +Wn′)/2
14. total score← total score+ path score ∗ path weight
15. total weight← total weight+ path weight
16. return total score

total weight

egories, i.e., person-to-person and publication-to-publication. At line 16, the score (a
float number) for a pair of instances is returned.

5.2. Path Comparability
As described, we compare the last nodes of instance a’s paths to those of the compa-
rable paths of instance b. One question here is how to determine if two paths are
comparable. For example, the following two paths are not comparable (predicates
in italic): (1). (personA, attend event, eventA, has event date, 2010-06-01); (2). (per-
sonA, has publication, article1, has publication date, 2010-06-01). Although the two
last nodes are all date information and thus are comparable, they actually come from
paths with different underlying semantics.

In our current approach, two paths are comparable if they satisfy the condition
shown in Equation 14:

PathComparable(path1, path2) = true ≡
(depth(path1) = depth(path2)) ∧

(∀i ∈ [1, depth(path1)],

P redicateComparable(path1.predicate[i], path2.predicate[i]) = true) (14)

where PathComparable and PredicateComparable are two functions, telling if two
paths or two predicates are comparable; depth counts the number of predicates in a
path; path1.predicate[i] and path2.predicate[i] return the ith predicate in two paths re-
spectively.

There are several questions coming out from Equation 14. The first one is how to
determine the comparability of two predicates, which will help to determine path com-
parability. In some situations, the comparability of predicates is not very clear. For
instance, the two predicates author on and edit on can be vague in their comparabil-
ity. For a publication, a person that did some edits on it does not necessarily have to be
listed as an author of it. In such a circumstance, without letting such two predicates
be comparable, we might miss some true matches while adding them in might hurt
precision.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:13

We say two predicates are comparable if the knowledge base (KB) entails that one is
the subproperty of another (obviously, this means equivalent properties are also com-
parable). For our experiments, we created these mapping axioms manually. For ex-
ample, the following two predicates are comparable: citeseer:fullname and foaf:name8.
They are from different ontologies, but both represent person name. Please note that
we also use entailment to determine if two classes are comparable. Therefore, we only
compute the similarity of instance pairs of comparable classes. Ontology alignment
[Euzenat 2004], a well studied topic in the Semantic Web, can help automatically de-
termine predicate and class comparability across multiple ontologies, which is out of
the scope of this paper.

Furthermore, when determining the comparability of two paths, we only care about
the predicates in the paths but to ignore the intermediate nodes. The reason is that
in two paths, intermediate nodes are URIs and distinct URIs do not necessarily repre-
sent distinct real world entities. Distinct URIs can actually represent two coreferent
instances. Since we do not have the complete coreference knowledge between URIs,
it is hard to involve intermediate nodes when determining path comparability. One
possible solution is that we adopt an iterative entity coreference algorithm on all in-
stances of comparable classes in a dataset and then take the coreference results of
the current iteration into account in further iterations to help better determine path
comparability. However, this will require certain level of system scalability because a
dataset can have millions of instances.

5.3. Node Similarity
Given that two paths are comparable, if the two last nodes are two literal values,
e.g., person names or publication titles, then we adopt the JaroWinklerTFIDF [Cohen
et al. 2003] string matching algorithm to compute their similarity unless otherwise
specified. In another situation, if the two nodes are both URIs in the RDF graph, then
we will simply check if they are identical. The similarity score between two literals
ranges from 0 to 1 while the score between any pair of URIs will be either 0 (not
match) or 1 (identical). If the URIs do not match, the similarity is computed by further
expanding those URIs as we presented in Section 3.

5.4. Comparing All Nodes in Paths
One design choice we made is to compute the path score between two comparable paths
by only comparing their end nodes. Another option is to take into account those inter-
mediate nodes when calculating path score as shown in Algorithm 3.

From line 5 to 16, we calculate the path score between two comparable paths as the
average of all matching scores between nodes at corresponding positions; and we pick
the maximum path score between path m of instance a and all its comparable paths
of instance b. Note, intermediate nodes must either be URIs or blank nodes. Blank
nodes have a node ID which is limited in scope to a serialization of a particular graph,
i.e. a blank node named nodeA in one RDF graph does not represent the same node
as a node with the same name in any other graph. Therefore, we do not compare two
blank nodes or a blank node and a URI but only compare two URIs or two literals from
line 8 to 14. At line 20, if two paths whose nodes are all URIs or blank nodes have
a path score of 0, meaning none of their nodes match, we do not update path weight.
Because path weight is initialized to be zero at line 4, total score and total weight will
not be updated either at line 23 and 24. In this case, we are not applying any penalty
to a path that ends on a URI and doesn’t match any of its comparable paths from the
other instance.

8FOAF stands for Friend of a Friend. More details are available at http://www.foaf-project.org/.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:14 Dezhao Song and Jeff Heflin

Algorithm 3 Compare All Nodes(Na, Nb), Na and Nb are the context of instances a
and b collected with Algorithm 1; returns the similarity between a and b

1. total score← 0, total weight← 0
2. for all paths m∈Na do
3. if ∃path n∈Nb, PathComparable(m,n) then
4. path weight← 0, path score← 0
5. for all paths n′∈{p|p ∈ Nb ∧ PathComparable(p,m)} do
6. score← 0, count← 0
7. for i <= depth(m) do
8. if m.node[i] is literal and n′.node[i] is literal then
9. score← score+ Sim(m.node[i], n′.node[i])

10. count← count+ 1
11. else if m.node[i] is URI and n′.node[i] is URI then
12. if m.node[i] = n′.node[i] then
13. score← score+ 1
14. count← count+ 1
15. if score

count > path score then
16. path score← score

count
17. n′ ← path with the highest score compared to m
18. if m.node[last] is literal then
19. path weight← (Wm +Wn′)/2
20. else if m.node[last] is URI and path score ̸= 0 then
21. /* path n′ has at least one identical intermediate URI node with m */
22. path weight← (Wm +Wn′)/2
23. total score← total score+ path score ∗ path weight
24. total weight← total weight+ path weight
25. return total score

total weight

The rationale to only consider end nodes (as presented in Algorithm 2) is that the
intermediate nodes from two paths could be syntactically different but are actually
coreferent instances. So, if we apply penalties to mismatching intermediate nodes,
it is possible for the system to miss some true matches. One potential advantage of
matching intermediate nodes is that it may improve the system’s precision because
it is possible that the middle nodes are indeed different instances but the end nodes
are coincidentally the same. We hypothesize that the improvement on precision can-
not compensate the sacrificed recall when considering intermediate nodes and we will
experimentally compare Algorithm 2 and Algorithm 3 in Section 7.3.

5.5. The Open World Problem
Another challenge that we face is that we cannot make a closed-world assumption,
instead we need to deal with open-world [Russell and Norvig 2010]. We cannot assume
something we don’t know is false, everything we don’t know is undefined. Within a
Semantic Web dataset, some information can be missing. Our RKB dataset is composed
of several subsets of the complete RKB dataset, such as ACM, IEEE, DBLP, CiteSeer,
etc. Each of them, in the case of person instances, only includes a certain portion of
their information. For instance, these datasets might only contain some of these person
instances’ publications.

In our entity coreference algorithm, we try to relieve this Open World problem. First
of all, we do not apply penalties to mismatches on URIs. As shown in Algorithm 2,
if the last node of path m of instance a is a URI but it doesn’t match any last node
of comparable paths of instance b, we do not add any weight to total weight. These

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:15

mismatched URIs are expanded to get further literals and other URIs, which will be
used to determine the similarity.

Second, we do not apply any penalties on missing information. If there are no paths
of instance b that are comparable to path m of instance a, we do not apply any penal-
ties. The intuition behind our approach is that we compare every path present in the
context and apply appropriate penalties; in the meanwhile, mismatches that are po-
tentially caused by information incompleteness cannot simply be treated as real mis-
matches. We would like to investigate more sophisticated solutions to this problem in
future work.

6. SCALABILITY
In order to improve system scalability, we tried a simple preselection technique. The
general idea is that we want to quickly select those instance pairs that are likely to
be coreferent by only comparing some identifying information of them. For example,
for person instances, the names could be a good choice; while titles might be useful for
performing preselection of publication instances. However, one question here is how to
choose such identifying information in a domain-independent fashion. In other words,
given different domains (different types of ontology instances), how would the system
automatically pick the identifying information without human interferences?

In this paper, we choose to utilize the learned predicate discriminability as intro-
duced in Section 4.1 to choose such identifying information. Recall that the predicate
discriminability represents how discriminating a predicate is based upon the diver-
sity of its object/subject value set. The more discriminating a predicate is, the more
diverse its subject/object value set is and thus the more identifying its object/subject
values are for the ontology instances. Therefore we could choose the most disambiguat-
ing predicate pmax as the identifying predicate and then use its object/subject values
as the identifying information. Another question is that it is possible that not all in-
stances have triples with pmax. For instance, in the collected RKB dataset, the pred-
icate has email address has the highest predicate discriminability (to the object di-
rection); while only 724 out of over three million person instances actually have such
information.

In our approach, a predicate pm is chosen as pmax if it satisfies Equation 15:

argmax
pm∈PC

P (pm) (15)

where pm is a predicate; P (pm) computes the predicate discriminability of pm; PC is a
set of datatype properties that are used by all instances in a given dataset, which is
computed in Equation 16:

PC = {p|Range(p) = literal ∧ ∀i ∈ G,∃j, t =< i, p, j >∈ G} (16)

where i is an ontology instance of a particular type in dataset G; j represents any ob-
ject value; p is a predicate and Range(p) represents the range of p (i.e., literal or URI).
These two equations mean that a predicate will be chosen as pmax if its range is literal,
all instances in a given dataset use it and finally it needs to be more discriminating
than other such predicates. Here, we require that pmax should have literal range be-
cause the underlying idea of this preselection is to filter by computing the similarity
of some identifying information. For two URIs, we can only say if they are identical
or not, which doesn’t really give any similarity; furthermore, again, syntactically dis-
tinct URIs could be coreferent. We then pairwisely compare the object values of pmax

of instances of comparable types in a dataset and select pairs whose object similarity
is higher than a pre-defined threshold.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:16 Dezhao Song and Jeff Heflin

7. EVALUATION
In this section, we present how we collect and prepare our datasets, the evaluation
metrics and methodology we use and the evaluation results by applying our entity
coreference algorithm on different instance categories from datasets of various do-
mains. Our system is implemented in Java and compiled with Java 1.6. All our ex-
periments are conducted on a single Sun Workstation with one eight-core Intel Xeon
2.93GHz processor and 6GB memory.

7.1. Experiment Setup
7.1.1. Data Collection and Preparation. We evaluate our entity coreference algorithm on

instances from the RKB and the SWAT datasets.
The RKB Dataset. The entire RKB dataset9 [Glaser et al. 2008] consists of 54

RDF subsets, containing academic publications from different sources, such as ACM,
CiteSeer, DBLP, and so on. Since the entire RKB dataset is quite large, we pick eight
subsets of it: ACM, DBLP, CiteSeer, EPrints, IEEE, LAAS-CNRS, Newcastle, ECS. For
convenience, in the rest of this paper, we call these eight subsets together as the RKB
dataset. This dataset has 82 million triples (duplicates are removed), 3,986,676 person
instances and 2,664,788 publication instances.

The SWAT Dataset. The SWAT dataset10 is another RDF dataset, consisting data
parsed from the downloaded XML files of CiteSeer and DBLP. It has 26 million triples,
904,211 person instances and 1,532,758 publication instances.

Although the two datasets share some information, the main difference is that they
use different ontologies, so that different predicates are involved. Their coverage of
publications could also be different. Additionally, some information may be ignored
from the original XML files for the SWAT dataset during transformation. Note that all
owl:sameAs statements in both datasets are ignored while we collect the context for
instances as described in Section 3. They are only used for evaluating our results but
not for facilitating our entity coreference process in any sense.

Test Set Preparation. In each dataset, there are different classes of ontology in-
stances, such as person, publication, organization, etc. We evaluate our entity corefer-
ence algorithm on person and publication instances from both datasets. Also, because
there exist millions of instances in one dataset of one single instance category, we only
select a small but reasonable amount of them for our evaluation.

To increase the ambiguity of our test sets, we randomly picked 1,579 person and
2,102 publication instances from the RKB dataset and 1,010 person and 1,378 publica-
tion instances from the SWAT dataset through a filtering process. If the names/titles of
two instances have a similarity score higher than 0.5 but are still said to be not corefer-
ent based upon the groundtruth, we will put this pair of instances into an instance pool.
Then we apply our algorithm on every pair of instances in each of the four test sets.
We will describe how we achieve the goldstandard in section 7.1.2. There are 393,339,
78,444, 52,003 and 450,500 paths for our RKB publication, RKB person, SWAT person
and SWAT publication test sets respectively. Note that, in the experiments we are not
only comparing those instances whose names or titles have similarity scores higher
than 0.5 but not coreferent. We apply our algorithm on every pair of instances in each
of the test sets.

7.1.2. Evaluation Metric and Methodology. Our algorithm does entity coreference on every
pair of instances in the test sets and stores results in the form of (instanceA, instanceB,
score). In our evaluations, we use the standard measures: precision, recall and F1-score

9http://www.rkbexplorer.com/data/
10http://swat.cse.lehigh.edu/resources/data/

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:17

as computed in Equations 17 and 18:

Precisiont =
|correctly detected pairs|
|totally detected pairs|

, Recallt =
|correctly detected pairs|
|true matches in test set|

(17)

F1-Scoret = 2 ∗ Precisiont ∗Recallt
Precisiont +Recallt

(18)

where t represents threshold in all three equations.
There are a few things to note about our evaluations. First of all, in this paper, we

evaluate our algorithm on different instance categories from two different datasets.
Groundtruth of the RKB dataset can be downloaded from their website. To verify
the soundness of the RKB groundtruth, we manually verified 300 coreferent pairs of
person instances and publication instances respectively, while there are 81,556 and
148,409 in total for person and publication respectively in our collected RKB dataset.
For the SWAT dataset, we manually labeled the groundtruth.

Furthermore, because the owl:sameAs predicate is transitive, i.e., if A is coreferent
with B which is also coreferent with C, we will also have A and C are coreferent due to
transitivity. In order to give the best correct evaluation results, we materialized all the
coreferent pairs that can be achieved through reasoning on transitivity. Please note
that we do not materialize reflexivity and symmetry.

Finally, in order to guarantee the completeness of the RKB groundtruth, we adopted
a lazy or passive approach. We run our entity coreference algorithm on the two RKB
test sets, and apply thresholds from 0.3 to 0.9 to evaluate the results based upon the
groundtruth provided by RKB. Then we pick the comparison system (to be formally
presented in section 7.1.3) that obtains the lowest precision, find out all the pairs
that are detected by this system but are said to be not coreferent according to the
groundtruth. For these wrongly detected pairs, we manually check each of them to see
if any pair should be coreferent. We rely on the authors’ DBLP and real homepages
to perform such checks. Through this lazy-verification step, we were able to find 295
missing coreferent pairs for the RKB person test set. Mostly, RKB misses a coreferent
pair of person instances because different subsets of RKB share little common publica-
tions for the two instances. Note that our 1,579 RKB person test set is generated after
this lazy-verification.

7.1.3. Comparison Systems. In order to show the effectiveness of our proposed entity
coreference algorithm, we compare our algorithm to some comparison systems that
are not equipped with all the features we have presented. In our proposed system,
we have the following features: expansion (E#) (# represents the depth of expansion),
discriminability (P, representing predicate based triple discriminability), discount (D)
which is implemented by using the factor. For example, the comparison system E2-D
says it expands to depth 2, doesn’t use triple discriminability but uses the discount of
each expanded triple. So, for E2-D, Equation 13 will change to Equation 19:

Wpath =

depth(path)∏
i=1

Fi (19)

where path depth is 2. For system E2-P, it uses predicate discriminability in the way
that it propagates the discriminabilities of the triples along the expansion chain. Al-
though such propagations can be viewed as one type of discount, our real discounting
is from the factors. So, for this system, the weight of a path is computed with Equation

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:18 Dezhao Song and Jeff Heflin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(a) RKB Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(b) RKB Person

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(c) SWAT Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(d) SWAT Person

Fig. 3. F1-scores for RKB Publication, RKB Person, SWAT Publication and SWAT Person

20:

Wpath =

depth(path)∏
i=1

Pi (20)

where Pi is the predicate discriminability of a triple at depth i. For systems E1 and
E2, the weight for every path in the neighborhood graph is set to 1. Our proposed
algorithm, E2-P-D, then uses depth 2 expansion and adopts discounts and predicate
based triple discriminability to form path weight.

7.2. Evaluate against Comparison Systems
In this section, we compare our proposed entity coreference algorithm to the compar-
ison systems discussed in Section 7.1.3. Figures 3(a) to 3(d) show the F1-scores of our
algorithm on the RKB publication, RKB person, SWAT publication and SWAT person
datasets respectively. The x-axes are thresholds and the y-axes are percentage val-
ues, i.e., F1-scores. In these experiments, we adopted the JaroWinklerTFIDF string
matching algorithm developed by Cohen et al. [2003]. From the F1-scores, we can see
that our distance-based discounting entity coreference algorithm (E2-P-D) achieves
the best performance on all four datasets. The F1-scores that our algorithm achieves

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:19

for RKB publication, RKB person, SWAT publication and SWAT person are 94.4%,
90.6%, 91.0% and 93.8% at threshold 0.7, 0.7, 0.9 and 0.9 respectively.

System E1 is our baseline system in the sense that there is no discriminability in-
cluded, no discounts at all and that it only considers adjacent triples. Compared to E1,
E2 finds neighborhood graphs (contexts) in a broader range. But without discounts
and discriminability, it is clearly worse than E1 for RKB publication, RKB person and
SWAT person; for SWAT publication, although E2 has better results at thresholds 0.8
and 0.9, its best F1-score is much worse than that of E1. Such comparison shows that
broader contexts can have negative impact if not appropriately managed.

By comparing E1-P to E1, it is not very clear that if only adding triple discrim-
inability on adjacent triples gives better results. For the two publication datasets,
adding such discriminability did lead to better results (except for threshold 0.9 and 0.5
for RKB publication and SWAT publication respectively); however, for the other two
datasets, these two systems achieve very similar performance. Note that sometimes
the curves of the two systems on the two person datasets are not very clear because
they are overlapping.

Furthermore, E2-P is better than E2 for all datasets, though they achieve similar
results for RKB person at thresholds 0.8 and 0.9. Different from the comparison be-
tween E1 and E1-P, adding triple discriminability to broader contexts significantly
improved system performance. This shows the effectiveness of using a broader context
with better management. The differences between E2 and E2-D show that by only ap-
plying factor discounts can also give us a significant improvement on all datasets. This
verifies the effectiveness of discounting. For SWAT publication, although E2-D and E2
have similar results at thresholds 0.3 and 0.9, the best F1-score of E2-D is much higher
than that of E2.

Last, our proposed algorithm, E2-P-D, is able to achieve the best performance for all
datasets. Although precision and recall are not shown, E2-P-D has low precision at low
thresholds, which can be partially because that we don’t apply penalties on URI mis-
matches and missing literal information. But it is often able to improve as threshold
rises, often topping out higher than any other system in the study. Most of the compar-
ison systems using broader context information experience significant drops in recall
at higher thresholds, but E2-P-D is less affected when applying high thresholds. Com-
pared to E2-D, E2-P-D shows better results on RKB publication at all thresholds and
on RKB person except at threshold 0.9; also, on SWAT publication, E2-P-D is clearly
better than E2-D from thresholds 0.7 to 0.9. Again, this verifies the effectiveness of
using predicate discriminability. E2-P-D shows significant improvement over E2-P for
the two publication datasets (thresholds 0.5 to 0.9 for RKB publication and thresholds
0.4 to 0.9 for SWAT publication); for the two person datasets, it is not significantly bet-
ter than E2-P but it is able to be on top at high thresholds. Such results demonstrate
the effectiveness of combining triple discriminability and the discounting factor.

7.3. End Nodes Only vs. All Nodes in Paths
In Sections 5.1 and 5.4, we discussed two alternatives of computing the similarity
between two comparable paths: only matching end nodes or matching all nodes of two
paths. In this section, we experimentally compare these two alternatives on our four
test sets as shown in Table I.

In general, only matching end nodes gives better recall while matching all nodes in
paths leads to better precision. For RKB publication, RKB person and SWAT publica-
tion, the all-node version algorithm has better F1-scores at low thresholds due to its
higher precision and comparably good recall; however, for higher thresholds, the end-
node version algorithm wins out because of its less affected recall and improved preci-
sion. The end-node version algorithm has the best F1-scores for these three datasets.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:20 Dezhao Song and Jeff Heflin

Table I. Matching End Nodes vs. Matching All Nodes

Dataset Metric System Threshold
0.5 0.6 0.7 0.8 0.9

RKB Publication

Precision End-Node 58.75 87.74 95.42 97.71 99.71
All-Node 64.46 89.68 96.41 98.44 99.41

Recall End-Node 100 99.28 93.42 89.29 82.72
All-Node 99.58 95.63 88.28 68.06 30.02

F1-score End-Node 74.02 93.15 94.41 93.31 90.42
All-Node 78.26 92.56 92.16 80.48 46.12

RKB Person

Precision End-Node 34.09 67.18 88.40 97.89 99.21
All-Node 43.18 75.76 89.39 98.06 97.31

Recall End-Node 98.32 95.88 92.94 81.92 63.75
All-Node 96.38 91.76 78.64 59.46 21.28

F1-score End-Node 50.63 79.00 90.61 89.19 77.62
All-Node 59.64 83.00 83.67 74.03 34.92

SWAT Publication

Precision End-Node 33.16 41.72 49.51 63.79 84.13
All-Node 34.67 44.35 55.23 69.15 80.72

Recall End-Node 100 100 99.90 99.69 99.07
All-Node 100 99.48 97.09 81.00 42.16

F1-score End-Node 49.81 58.88 66.21 77.80 90.99
All-Node 51.48 61.35 70.41 74.61 55.39

SWAT Person

Precision End-Node 13.74 16.93 39.27 83.64 91.09
All-Node 13.82 17.75 44.69 85.88 92.98

Recall End-Node 97.85 97.42 97.42 96.57 96.57
All-Node 97.42 97.42 97.42 96.57 96.57

F1-score End-Node 24.10 28.84 55.98 89.64 93.75
All-Node 24.21 30.03 61.27 90.91 94.74

Note: We bold the higher scores that a system achieves than the other for each thresh-
old on a dataset and also underline the best F1-scores for all thresholds for each dataset.

For SWAT person, all-node has the best F1-score because it has better precision than
end-node and its recall doesn’t get affected when applying high thresholds. Although
end-node is not as good as all-node on SWAT person, only about 1% difference in their
best F1-scores was observed; the best F1-scores of end-node are 1.85%, 6.94% and
16.38% higher than those of all-node on RKB publication, RKB person and SWAT pub-
lication respectively.

7.4. Robustness of Similarity Computations
In our system, we heavily rely on string matching to obtain the similarity between
each pair of paths and thus the similarity between two instances. In the results pre-
sented in Section 7.2, we adopted the JaroWinklerTFIDF string matching algorithm
from the secondstring package [Cohen et al. 2003] and we achieved good results. How-
ever, string matching algorithms should not be the dominating factor in our system.
In this section, we show that our proposed system, E2-P-D, is robust in that it is able
to achieve the best performance regardless of the chosen string matching algorithm.
Figures 4(a) to 5(d) show the F1-scores for RKB publication, RKB person, SWAT pub-
lication and SWAT person datasets by adopting Edit distance [Levenshtein 1966] and
Jaccard [Jaccard 1901] similarity measure.

From the results, we can see that our system is not subject to different string match-
ing algorithms. It is true that the achieved F1-scores may vary, the shape of the curves
may drift left or right and some other systems are able to achieve equally good results.
However, E2-P-D was able to obtain the best F1-scores for all datasets with Edit dis-
tance and Jaccard similarity while none of the other comparison systems was able to
achieve such results.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:21

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8

E1 E1P E2 E2D E2P E2PD

(a) RKB Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(b) RKB Person

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8

E1 E1P E2 E2D E2P E2PD

(c) SWAT Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8

E1 E1P E2 E2D E2P E2PD

(d) SWAT Person

Fig. 4. F1-Scores for Edit Distance String Matching

7.5. System Scalability
In this section, we examine the scalability of our proposed system (E2-P-D) and employ
the preselection technique introduced in Section 6 to improve its scalability. For all
experiments in this section, we use Jaccard similarity for string matching.

First of all, Figure 6(a) shows the runtime by applying our algorithm to 2,000 to
20,000 instances. The y-axis shows how many seconds were needed for the algorithm
to finish and we use a logarithmic scale with base 10. From the results of RKB person
naive, RKB publication naive, SWAT person naive and SWAT publication naive, we can
see that E2-P-D doesn’t scale well since it simply conducts a naive pairwise comparison
on all pairs of instances in a given dataset.

By applying the preselection technique, we re-run our scalability test and the four
preselection curves in Figure 6(a) show that the system scales better after preselec-
tion. Please note that the runtime for the improved system includes both the time for
preselection and entity coreference. Since we are at our early stage in exploring the
scalability issue of entity coreference systems, our current approach is simple com-
pared to some existing research [Michelson and Knoblock 2006; Yan et al. 2007; Cao
et al. 2011]; however, our approach is unsupervised that it does not require any pre-
labeled groundtruth for preselection; also, our approach is domain-independent in the
sense that it is based upon the predicate discriminability that is computed in a domain-
independent and automatic manner.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:22 Dezhao Song and Jeff Heflin

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(a) RKB Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(b) RKB Person

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(c) SWAT Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(d) SWAT Person

Fig. 5. F1-Scores for Jaccard Distance String Matching

1

10

100

1000

10000

100000

2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

Number of Instances

R
u

n
ti

m
e

 (
s

)

RKB Per Naive RKB Pub Naive

SWAT Per Naive SWAT Pub Naive

RKB Per Preselection RKB Pub Preselection

SWAT Per Preselection SWAT Pub Preselection

(a) System Scalability (b) Speedup Factor with Different Number
of Threads

Fig. 6. System Scalability

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:23

Table II. Preselection Results

Dataset Recall Number of Selected Pairs
RKB Person 0.965 2800

RKB Publication 1 2085
SWAT Person 0.974 1950

SWAT Publication 1 3081

In this scalability test, we parallelized our algorithm on 5 threads. Suppose we have
N instances, the number of needed comparisons will be M = N∗(N−1)

2 . We equally di-
vide this M comparisons to the five threads. We put the context information of the N in-
stances into memory and all threads fetch the context information from this in-memory
data structure. Figure 6(b) shows the speedup factor by distributing the M compar-
isons to one to eight threads. The speedup factor is computed as Speedup Factork = T1

Tk
,

where k is the number of threads and Tk is the runtime by deploying k threads. Except
for SWAT Person, the other three datasets didn’t get significant improvement on this
speedup factor by switching from 4 to 5 threads. With more than 5 threads, all datasets
continue to achieve higher speedup factors but with diminishing returns.

We also did experiments to verify the effectiveness of our preselection approach by
examining how much recall it is able to achieve and how many pairs it selects. The
idea is that the preselection technique should give a decent level of recall so that
the overall performance of the entire system will not be affected much; meanwhile,
it should be selective enough in that it cannot select too many pairs. As introduced
in Section 7.1.2, because of limited available groundtruth information, we still evalu-
ate this preselection technique on the four test sets introduced in Section 7.1.1: 1,579
RKB person, 2,102 RKB publication, 1,010 SWAT person and 1,378 SWAT publica-
tion instances. Table II shows the number of selected pairs and recall of the applied
preselection technique. We set the threshold to be 0.4, meaning that if the similarity
between the identifying information (e.g., names or titles) of two instances is higher
than 0.4, they are preselected. The reason for setting a low threshold here is to ensure
high recall from the selected pairs. People names can be represented differently: first
name + last name, first initial + last name, etc.; there could also be misspellings. For
example, in our RKB Person test set, two names Carlos J. Pereira de Lu and Carlos
José Pereira de Lucena are very similar but only have a similarity of 0.43. From the
results, we see that our method achieves a decent recall; although we adopted a rel-
atively low threshold, our method significantly reduces the total number of instance
pairs that need to be compared with the expensive E2-P-D algorithm.

We should also check the F1-scores by applying E2-P-D and other comparison sys-
tems only to the preselected pairs. Figures 7(a) to 7(d) demonstrate the results after we
plug in this preselection technique into the entire entity coreference process. From the
results, we can see that our proposed system, E2-P-D, still achieves the best F1-scores
for all datasets and other comparison systems generally achieve better F1-scores. Such
improvement primarily comes from better precision. The reason is that the preselec-
tion process helped filtering out some false positives. For instance, without preselec-
tion, two person instances could have been said to be coreferent by comparing their
names, publications, etc. while only comparing their names may not even make them
to be preselected. The recall was not affected much and it could be the reason that the
missing groundtruth cannot be detected by those systems even without preselection.
Although E2-P-D still achieves the best performance for all datasets, other systems are
able to obtain equally (SWAT person and publication) or comparably good results (RKB
Publication and Person) to E2-P-D. One problem with our approach is that currently
we do pairwise comparison based preselection; therefore, the preselection technique
itself may not scale for larger datasets (with millions of instances). Even only comput-

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:24 Dezhao Song and Jeff Heflin

(a) RKB Publication

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(b) RKB Person

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(c) SWAT Publication

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0.3 0.4 0.5 0.6 0.7 0.8 0.9

E1 E1P E2 E2D E2P E2PD

(d) SWAT Person

Fig. 7. F1-Scores with Preselection and Using Jaccard Distance

ing the similarity of the names of millions of instances could still be time-consuming.
For future work, we will explore how to locate candidate pairs more efficiently.

7.6. Compare to State-of-the-art Systems
To further demonstrate the capability of our proposed entity coreference algorithm,
we compare E2-P-D to other systems that participated the OAEI2010 (Ontology Align-
ment Evaluation Initiative 2010) Campaign11 [Euzenat et al. 2010] on the Person-
Restaurant (PR) benchmark designed for ontology instance matching. We compare
to RiMOM [Li et al. 2009], ObjectCoref [Hu and Qu 2008], LN2R [Saı̈s et al. 2009],
CODI [Noessner et al. 2010], and ASMOV/ASMOV D [Jean-Mary et al. 2009] on the
three datasets of PR: Person1, Person2 and Restaurant. Person1 and Person2 are two
synthetic datasets where coreferent records are generated by modifying the original
records; Restaurant is a real-world dataset, matching instances describing restaurants
from Fodors (331 instances) to Zagat (533 instances) with 112 duplicates12. Further-
more, we compare to the entity coreference system proposed by Dey et al. [2011] on a
synthetic census dataset generated with FEBRL [Christen 2008]. We compare to these
systems by referencing their published results as shown in Table III.

11http://oaei.ontologymatching.org/2010/
12For full details of these datasets, please refer to the OAEI2010 report [Euzenat et al. 2010].

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:25

Table III. Comparing to Other Systems

Dataset System Precision(%) Recall(%) F1(%)

Person1

E2-P-D 100 100 100
RiMOM [Li et al. 2009] 100 100 100
ObjectCoref [Hu and Qu 2008] 100 99.8 99.9
LN2R [Saı̈s et al. 2009] 100 100 100
CODI [Noessner et al. 2010] 87 96 91
ASMOV D [Jean-Mary et al. 2009] 100 76.6 87
ASMOV [Jean-Mary et al. 2009] 100 100 100

Person2

E2-P-D 98.52 99.75 99.13
RiMOM [Li et al. 2009] 95.2 99 97.1
ObjectCoref [Hu and Qu 2008] 100 90 94.7
LN2R [Saı̈s et al. 2009] 99.4 88.25 93
CODI [Noessner et al. 2010] 83 22 36
ASMOV D [Jean-Mary et al. 2009] 98.2 13.5 24
ASMOV [Jean-Mary et al. 2009] 70.1 23.5 35

Restaurant

E2-P-D 74.58 98.88 85.02
RiMOM [Li et al. 2009] 86 76.8 81.1
ObjectCoref [Hu and Qu 2008] 58 100 73
LN2R [Saı̈s et al. 2009] 75.67 75 75
CODI [Noessner et al. 2010] 71 72 72
ASMOV D [Jean-Mary et al. 2009] 69.6 69.6 69.6
ASMOV [Jean-Mary et al. 2009] 69.6 69.6 69.6

Census E2-P-D 100 99.10 99.55
Dey et al. [Dey et al. 2011] 99 98 98.50

Note: We bold the best scores that one or more systems achieve for each of the four datasets.

On Person1 and Person2, our system achieves the best F1-score on both datasets. Al-
though RiMOM, ObjectCoref, LN2R and ASMOV also achieve good results on Person1,
their performances drop significantly on Person2. This could be due to the difference
between how coreferent instances were generated in these two datasets. For Person1,
each original instance has at most one coreferent instance with a maximum of 1 mod-
ification per coreferent instance and a maximum of 1 modification per attribute of the
original instance. Person 2 is created as Person 1, but with a maximum of 3 modifica-
tions per attribute, and a maximum of 10 modifications per instance. On the Restau-
rant dataset, both RiMOM and LN2R achieve better precision than our algorithm, but
their recall is much lower than ours. E2-P-D has better precision than ObjectCoref
while is only slightly worse on recall. Although E2-P-D is not the best in either preci-
sion or recall, it has significantly better F1-score than the other systems. Finally, on
the census dataset, our algorithm achieves better performance than that of Dey et al.
on all three metrics.

7.7. Discussion
The results show certain advantages of our approach; however, there are a few points
to discuss. First, as we apply higher thresholds, recall generally goes down for all sys-
tems. As we described in Section 5.5, we are facing the Open World problem. Different
subsets of RKB or SWAT may not have complete information for an ontology instance.
So, two person instances from ACM RKB and DBLP RKB can be filtered out by apply-
ing a high threshold because both of their contexts miss certain amount of information.
One possible solution to this problem is to merge the contexts of two instances when
we have a very high similarity score for them. The intuition behind such merging is
to let the context to evolve to be more comprehensive. By employing an iterative en-
tity coreference algorithm, we continue to compare the merged contexts, and therefore
could potentially reduce the chance to miss a true match caused by information incom-
pleteness from heterogeneous data sources. However we need to be very careful about

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:26 Dezhao Song and Jeff Heflin

doing such merges, since it is easy to add noise to the data if the standard for merg-
ing is not appropriately set. For example, two person instances (a and b) with names
James Smith and John Smith from the same institution co-authored a paper. In this
case, the similarity between instances a and b could be high because they share the
same last name, work for the same institution and furthermore have the same publi-
cation whose title, publication date, venue, etc. information might be available. If we
decide to merge the contexts of these two instances to make a combined instance c, the
context of c actually contains information of two distinct instances and thus is noisy.
In the next iteration, when we compute the similarity between c and other instances
(e.g., person d), instances that shouldn’t have been merged if individually compared
to a and b could be merged due to some matchings provided by the noisy context of
c. Iteratively, we could then have contexts that are more and more noisy which could
ultimately affect precision.

Another problem is that, currently, we do not apply penalties for URI mismatches
or missing information. However, applying penalties in such scenarios may cause us
to have lower recall. So it is always the problem of keeping a balance between preci-
sion and recall. Our choice is not to sacrifice recall while still having a good control
on precision by exploiting appropriate weights and context information. One possible
way to apply penalties on those situations might be to employ some iterative entity
coreference algorithm. At each pass, we record the instance pairs that are clearly not
coreferent or clearly coreferent (depending on how the algorithm is designed) and in-
tegrate the intermediate results into further iterations until we are only gaining new
results under some pre-defined level.

8. CONCLUSION AND FUTURE WORK
In this paper, we propose an entity coreference algorithm for detecting equivalent Se-
mantic Web instances. Our algorithm finds a neighborhood graph of an ontology in-
stance as its context information. With our triple discriminability learning scheme and
the distance-based discounting approach, we assign a weight to each path in the con-
text. We adopt a bag-of-paths approach to compute the similarity score between a pair
of ontology instances. We demonstrate the effectiveness of our entity coreference algo-
rithm on test sets from different domains: author, publication, census and restaurant.
Furthermore, although our algorithm heavily utilizes string matching, we show that
it is not subject to different string matching algorithms. We also tested and improved
the scalability of our system with a preselection technique that effectively reduces the
total computation time and still allows our system to achieve the best F1-scores. Fi-
nally, we show that our system outperforms some state-of-the-art entity coreference
systems.

For future work, we plan to explore iterative algorithms in order to apply appropri-
ate penalties on URI mismatches and perform merging of instance contexts. Also, we
will continue to investigate other techniques to improve the scalability of our system.
Finally, we are interested in graph-based matching algorithms because, essentially,
the context of an ontology instance is not a set of paths but a graph.

REFERENCES
ASWANI, N., BONTCHEVA, K., AND CUNNINGHAM, H. 2006. Mining information for instance unification. In

International Semantic Web Conference. 329–342.
BAGGA, A. AND BALDWIN, B. 1998. Entity-based cross-document coreferencing using the vector space

model. In COLING-ACL. 79–85.
BAYARDO, R. J., MA, Y., AND SRIKANT, R. 2007. Scaling up all pairs similarity search. In Proceedings of the

16th International Conference on World Wide Web (WWW). 131–140.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:27

BEKKERMAN, R. AND MCCALLUM, A. 2005. Disambiguating web appearances of people in a social network.
In WWW. 463–470.

BERNERS-LEE, T., HENDLER, J., AND LASSILA, O. 2001. The semantic web. Scientific American 284, 5,
34–43.

BHATTACHARYA, I. AND GETOOR, L. 2007. Collective entity resolution in relational data. TKDD 1, 1.
BILENKO, M. AND MOONEY, R. J. 2003. Adaptive duplicate detection using learnable string similarity

measures. In Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery
and data mining. KDD ’03. ACM, New York, NY, USA, 39–48.

BILENKO, M., MOONEY, R. J., COHEN, W. W., RAVIKUMAR, P. D., AND FIENBERG, S. E. 2003. Adaptive
name matching in information integration. IEEE Intelligent Systems 18, 5, 16–23.

BIZER, C., HEATH, T., AND BERNERS-LEE, T. 2009. Linked data - the story so far. Int. J. Semantic Web Inf.
Syst. 5, 3, 1–22.

BUNESCU, R. C. AND PASCA, M. 2006. Using encyclopedic knowledge for named entity disambiguation. In
EACL.

CAO, Y., CHEN, Z., ZHU, J., YUE, P., LIN, C.-Y., AND YU, Y. 2011. Leveraging unlabeled data to scale block-
ing for record linkage. In Proceedings of the 22nd International Joint Conference on Artificial Intelligence
(IJCAI).

CHRISTEN, P. 2008. Febrl -: an open source data cleaning, deduplication and record linkage system with a
graphical user interface. In Proceeding of the 14th ACM SIGKDD international conference on Knowledge
discovery and data mining. KDD ’08. ACM, New York, NY, USA, 1065–1068.

CHRISTEN, P. 2011. A survey of indexing techniques for scalable record linkage and deduplication. IEEE
Transactions on Knowledge and Data Engineering 99, PrePrints.

COHEN, W. W., RAVIKUMAR, P. D., AND FIENBERG, S. E. 2003. A comparison of string distance metrics for
name-matching tasks. In IJCAI-03 Workshop on Information Integration on the Web (IIWeb-03). 73–78.

CUCERZAN, S. 2007. Large-scale named entity disambiguation based on Wikipedia data. In Proceedings of
the 2007 Joint Conference on Empirical Methods in Natural Language Processing and Computational
Natural Language Learning (EMNLP-CoNLL). Association for Computational Linguistics, Prague,
Czech Republic, 708–716.

DAVID, N. AND SATOSHI, S. 2007. A survey of named entity recognition and classification. Linguisticae
Investigationes 30, 1, 3–26.

DEY, D., MOOKERJEE, V. S., AND LIU, D. 2011. Efficient techniques for online record linkage. IEEE Trans.
Knowl. Data Eng. 23, 3, 373–387.

DONG, X., HALEVY, A., AND MADHAVAN, J. 2005. Reference reconciliation in complex information spaces.
In Proceedings of the 2005 ACM SIGMOD international conference on Management of data. SIGMOD
’05. ACM, New York, NY, USA, 85–96.

ELMAGARMID, A. K., IPEIROTIS, P. G., AND VERYKIOS, V. S. 2007. Duplicate record detection: A survey.
IEEE Trans. Knowl. Data Eng. 19, 1, 1–16.

EUZENAT, J. 2004. An api for ontology alignment. In International Semantic Web Conference. 698–712.
EUZENAT, J., FERRARA, A., MEILICKE, C., NIKOLOV, A., PANE, J., SCHARFFE, F., SHVAIKO, P., STUCK-

ENSCHMIDT, H., SVB-ZAMAZAL, O., SVTEK, V., AND TROJAHN DOS SANTOS, C. 2010. Results of the
ontology alignment evaluation initiative 2010. In Proceedings of the 4th International Workshop on On-
tology Matching (OM) collocated with the 9th International Semantic Web Conference (ISWC).

FEITELSON, D. G. 2004. On identifying name equivalences in digital libraries. Inf. Res. 9, 4.
GILES, C. L., BOLLACKER, K. D., AND LAWRENCE, S. 1998. Citeseer: an automatic citation indexing sys-

tem. In Proceedings of the third ACM conference on Digital libraries. DL ’98. ACM, New York, NY, USA,
89–98.

GLASER, H., MILLARD, I., AND JAFFRI, A. 2008. Rkbexplorer.com: A knowledge driven infrastructure for
linked data providers. In ESWC. 797–801.

GOOI, C. H. AND ALLAN, J. 2004. Cross-document coreference on a large scale corpus. In HLT-NAACL.
9–16.

GU, L. AND BAXTER, R. A. 2004. Adaptive filtering for efficient record linkage. In Proceedings of the Fourth
SIAM International Conference on Data Mining.

HALPIN, H., HAYES, P. J., MCCUSKER, J. P., MCGUINNESS, D. L., AND THOMPSON, H. S. 2010. When
owl: sameas isn’t the same: An analysis of identity in linked data. In 9th International Semantic Web
Conference (ISWC). 305–320.

HAN, H., GILES, C. L., ZHA, H., LI, C., AND TSIOUTSIOULIKLIS, K. 2004. Two supervised learning ap-
proaches for name disambiguation in author citations. In JCDL. 296–305.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

A:28 Dezhao Song and Jeff Heflin

HASSELL, J., ALEMAN-MEZA, B., AND ARPINAR, I. B. 2006. Ontology-driven automatic entity disambigua-
tion in unstructured text. In International Semantic Web Conference. 44–57.

HU, W. AND QU, Y. 2008. Falcon-ao: A practical ontology matching system. Journal of Web Semantics 6, 3,
237–239.

IOANNOU, E., NEJDL, W., NIEDERÉE, C., AND VELEGRAKIS, Y. 2010a. On-the-fly entity-aware query pro-
cessing in the presence of linkage. PVLDB 3, 1, 429–438.

IOANNOU, E., PAPAPETROU, O., SKOUTAS, D., AND NEJDL, W. 2010b. Efficient semantic-aware detection
of near duplicate resources. In The Semantic Web: Research and Applications, 7th Extended Semantic
Web Conference (ESWC). Springer, 136–150.

JACCARD, P. 1901. Distribution de la flore alpine dans le bassin des dranses et dans quelques régions
voisines. Bulletin de la Société Vaudoise des Sciences Naturelles 37, 241–272.

JEAN-MARY, Y. R., SHIRONOSHITA, E. P., AND KABUKA, M. R. 2009. Ontology matching with semantic
verification. Journal of Web Semantics 7, 235–251.

KALASHNIKOV, D. V. AND MEHROTRA, S. 2006. Domain-independent data cleaning via analysis of entity-
relationship graph. ACM Trans. Database Syst. 31, 2, 716–767.

LEVENSHTEIN, V. I. 1966. Binary codes capable of correcting deletions, insertions, and reversals. Soviet
Physics Doklady 10, 8, 707–710.

LEWIS, D. D. 1998. Naive (bayes) at forty: The independence assumption in information retrieval. In Pro-
ceedings of the 10th European Conference on Machine Learning. Springer-Verlag, London, UK, 4–15.

LEY, M. 2002. The DBLP computer science bibliography: Evolution, research issues, perspectives. In SPIRE.
1–10.

LI, J., TANG, J., LI, Y., AND LUO, Q. 2009. RiMOM: A dynamic multistrategy ontology alignment frame-
work. Knowledge and Data Engineering, IEEE Transactions on 21, 8, 1218–1232.

MANN, G. S. AND YAROWSKY, D. 2003. Unsupervised personal name disambiguation. In Proceedings of the
seventh conference on Natural language learning at HLT-NAACL 2003. Association for Computational
Linguistics, Morristown, NJ, USA, 33–40.

MICHELSON, M. AND KNOBLOCK, C. A. 2006. Learning blocking schemes for record linkage. In The Twenty-
First National Conference on Artificial Intelligence and the Eighteenth Innovative Applications of Artifi-
cial Intelligence Conference, AAAI.

MILLER, G. A. 1995. Wordnet: A lexical database for english. Commun. ACM 38, 11, 39–41.
MINKOV, E., COHEN, W. W., AND NG, A. Y. 2006. Contextual search and name disambiguation in email

using graphs. In SIGIR. 27–34.
NOESSNER, J., NIEPERT, M., MEILICKE, C., AND STUCKENSCHMIDT, H. 2010. Leveraging terminologi-

cal structure for object reconciliation. In The Semantic Web: Research and Applications, 7th Extended
Semantic Web Conference (ESWC). 334–348.

PEDERSEN, T., PURANDARE, A., AND KULKARNI, A. 2005. Name discrimination by clustering similar con-
texts. In Proceedings of 6th International Conference on Computational Linguistics and Intelligent Text
Processing. 226–237.

RUSSELL, S. J. AND NORVIG, P. 2010. Artificial Intelligence - A Modern Approach (3. internat. ed.). Pearson
Education.

SAÏS, F., PERNELLE, N., AND ROUSSET, M.-C. 2009. Combining a logical and a numerical method for data
reconciliation. Journal on Data Semantics XII 12, 66–94.

SONG, D. AND HEFLIN, J. 2010. Domain-independent entity coreference in rdf graphs. In Proceedings of the
19th ACM international conference on Information and knowledge management. CIKM ’10. ACM, New
York, NY, USA, 1821–1824.

WINKLER, W. E. 2005. Approximate string comparator search strategies for very large administrative lists.
Tech. rep., Statistical Research Division, U.S. Census Bureau.

XIAO, C., WANG, W., AND LIN, X. 2008a. Ed-join: an efficient algorithm for similarity joins with edit distance
constraints. Proc. VLDB Endow. 1, 1, 933–944.

XIAO, C., WANG, W., LIN, X., AND YU, J. X. 2008b. Efficient similarity joins for near duplicate detection.
In Proceeding of the 17th international conference on World Wide Web. WWW ’08. ACM, New York, NY,
USA, 131–140.

YAN, S., LEE, D., KAN, M.-Y., AND GILES, L. C. 2007. Adaptive sorted neighborhood methods for efficient
record linkage. In Proceedings of the 7th ACM/IEEE-CS joint conference on Digital libraries. JCDL ’07.
ACM, New York, NY, USA, 185–194.

YAROWSKY, D. 1995. Unsupervised word sense disambiguation rivaling supervised methods. In Proceed-
ings of the 33rd annual meeting on Association for Computational Linguistics. ACL ’95. Association for
Computational Linguistics, Stroudsburg, PA, USA, 189–196.

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

Domain-Independent Entity Coreference for Linking Ontology Instances A:29

ZHANG, X. AND HEFLIN, J. 2010. Calculating word sense probability distributions for semantic web ap-
plications. In Proceedings of the 2010 IEEE Fourth International Conference on Semantic Computing.
ICSC ’10. IEEE Computer Society, Washington, DC, USA, 470–477.

ZHOU, Z.-H. AND LI, M. 2010. Semi-supervised learning by disagreement. Knowl. Inf. Syst. 24, 415–439.

Received December 2010; revised ; accepted

ACM Journal of Data and Information quality, Vol. , No. , Article A, Publication date: December 10.

