A Pruning Based Approach for Scalable Entity Coreference

Dezhao Song and Jeff Heflin
Department of Computer Science and Engineering
Lehigh University
19 Memorial Drive West
Bethlehem, PA 18015

Abstract

Entity coreference is the process to decide which identi-
fiers (e.g., person names, locations, ontology instances,
etc.) refer to the same real world entity. In the Seman-
tic Web, entity coreference can be used to detect equiv-
alence relationships between heterogeneous Semantic
Web datasets to explicitly link coreferent ontology in-
stances via the owl:sameAs property. Due to the large
scale of Semantic Web data today, we propose two prun-
ing techniques for scalably detecting owl:sameAs links
between ontology instances by comparing the similar-
ity of their context graphs. First, a sampling based tech-
nique is designed to estimate the potential contribution
of each RDF node in the context graph and prune in-
significant context. Furthermore, a utility function is de-
fined to reduce the cost of performing such estimations.
We evaluate our pruning techniques on three Semantic
Web instance categories. We show that the pruning tech-
niques enable the entity coreference system to run 10 to
35 times faster than without them while still maintain-
ing comparably good F1-scores.

1 Introduction

The purpose of entity coreference is to decide which iden-
tifiers (e.g., person names, publications, geographical loca-
tions, etc.) refer to the same real world entity. In the Se-
mantic Web, entity coreference can be used to detect equiv-
alent ontology instances in order to interlink heterogeneous
Semantic Web datasets. Here, an ontology is an explicit
and formal specification of a conceptualization, formally
describing a domain of discourse. An ontology consists of
a set of terms (classes) and relationships (class hierarchies
and predicates) between these terms. Resource Description
Framework (RDF) is a graph based data model for describ-
ing resources and their relationships. Two resources are con-
nected via one or more predicates in the form of triple. A
triple, <s, p, 0>, consists of three parts: subject, predicate
and object. The subject is an identifier, such as a Univer-
sal Resource Identifier (URI) and the object can either be
an identifier or a literal value, such as strings, numbers, etc.
A URI that takes the subject place in one triple can be the
object in another; therefore, the triples themselves form a

Copyright (© 2012, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

graph, the RDF graph. In an RDF graph, an ontology in-
stance is represented by a URI; however, syntactically dis-
tinct URIs could actually represent the same real world en-
tity. For instance, a single person can be represented by
different URIs in DBLP and CiteSeer; thus such URIs are
coreferent. In the Semantic Web, coreferent instances are
linked via the owl:sameAs predicate and such coreference
information can be utilized to facilitate other Semantic Web
related research, such as Semantic Web based question an-
swering, information integration, etc.

There has been numerous research for linking ontology
instances in the Semantic Web. Linked Data (Bizer, Heath,
and Berners-Lee 2009) is one of the leading efforts that al-
low people to publish their data with links to other datasets.
According to the latest statistics!, there are currently 207
datasets from various domains in the Linked Open Data
(LOD) Cloud with more than 28 billion triples and about
395 million links across different datasets. Therefore, there
is the need to develop scalable entity coreference algorithms
to be able to handle large scale datasets. On the other hand,
as reported by Halpin et al. (2010), only 50% (4 21%) of the
owl:sameAs links from the LOD Cloud are correct. There-
fore, while being able to scale to large datasets, an algorithm
should still achieve decent precision and recall.

In this paper, we present two novel pruning techniques
to build scalable entity coreference system on the Seman-
tic Web. In our algorithm, each instance is associated with
a neighborhood graph collected from the entire RDF graph
as its context (a set of weighted paths that start from this in-
stance and end on another node in the RDF graph). First, a
sampling based pruning technique is developed to estimate
the potential contribution of each path in the context in order
to prune the context that would not make significant contri-
bution to the final coreference similarity measure. Second, a
utility function is defined to measure the cost of performing
such estimations in order to further reduce the overall com-
plexity. Compared to an algorithm that considers all paths in
the context, our proposed pruning techniques speed up the
system by a factor of 10 to 35 while still maintaining com-
parably good F1-scores on three instance categories.

We organize the rest of the paper as follows. Section 2 dis-
cusses related work. In Section 3, we describe our previous

"hitp://www4.wiwiss.fu-berlin.de/lodcloud/state/



entity coreference algorithm based upon which we formally
propose our pruning techniques in Section 4. We show our
evaluation results in Section 5 and conclude in Section 6.

2 Related Work

The vector space model has been well adopted for en-
tity coreference in free text (Bagga and Baldwin 1998;
Gooi and Allan 2004). Han et al. (2004) deploy the Naive
Bayes classifier and SVM to disambiguate author names
in citations. However, they only evaluated on a few hun-
dred instances. The algorithm proposed by Bhattacharya and
Getoor (2007) achieves up to 6% higher F1-score than com-
parison systems on real world datasets. Their system pro-
cessed 58,515 person instances in the arXiv dataset in 5 min-
utes while each instance here only has name information.

In the Semantic Web, Hassel, et al. (2006) propose an al-
gorithm to match ontology instances created from DBLP
to DBWorld?> mentions. They selectively pick some triples
(e.g., name and affiliation) of an instance to match the
context in free text and achieve good results. However,
only about 800 entities were involved in their coreference
task. Aswani et al. (2006) try to match person ontology in-
stances converted from the British Telecommunications dig-
ital library, containing 4,429 publications and 9,065 author
names. They issue queries to search engines to find con-
text information and achieve good results; however, the sys-
tem may not scale to large datasets since it needs to fre-
quently interact with the web to retrieve context informa-
tion. In previous work, we adopt a bag-of-paths approach to
detect coreferent ontology instances (2010). The core idea
is that different properties may have quite different impact
and thus for each property, a specific weight is automati-
cally assigned. Combining such property weights with string
matching techniques, the similarity between two instances is
computed. Although it outperforms comparison systems on
some benchmark datasets, it took about 4 hours to process
10K instances in datasets with dense RDF graphs.

Hu et al. (2011) adopt a two-step approach for detecting
coreferent instances. For a URI, they firstly establish a ker-
nel that consists of semantically coreferent URIs based on
owl:sameAs, (inverse) functional properties and (max-) car-
dinalities; then they extend such kernel iteratively in terms
of discriminative property-value pairs in the descriptions of
URIs. The system was tested on a large dataset where an
instance has 7.81 triples on average and it needs about 8.6
seconds to detect the owl:sameAs links for a single instance.
Similar algorithms also include LN2R (Sais, Pernelle, and
Rousset 2009), CODI (Noessner et al. 2010) and ASMOV
(Jean-Mary, Shironoshita, and Kabuka 2009).

3 Preliminaries

We first review our previous context and bag-of-paths based
entity coreference algorithm (2010) based upon which our
pruning techniques are proposed and applied. We refer to it
as Naive here. Naive detects coreferent instances by com-
paring their neighborhood graphs (the context), a set of col-
lected paths, as shown in Figure 1. A path is defined as fol-

“http://www.cs.wisc.edu/dbworld/

Figure 1: Weighted Neighborhood Graph (G)

lows: path = (r,p1,M1, ..., Pn,Np), T is an ontology in-
stance; n; and p; (:>0) are any expanded RDF node and
predicate in the path. N (G, r) denotes the context (a set of
paths that start from r and end on another RDF node) for r in
RDF graph G; End(path) gives the last node in a path. Each
predicate is assigned a weight automatically (1) based on
its discriminability and the weight of a path is the multipli-
cation of all its predicate weights (2010).

Algorithm 1 Naive(Ng, Np), No and Ny, are the context for instances a and
b respectively; returns the similarity between a and b

1. score <+ 0, weight < 0
2. for all paths meN, do
if 3path n€ Ny, PtCmp(m, n) then

w

4 n < Comparison(m, Np);

5 if n # null then

6. ps < Sim(End(m), End(n))
7 pw +— (Wp, + W) /2

8 score <— score + ps * pw

9 weight < weight + pw

score

weight

Algorithm 2 Compare(m, Np), m is a path from N, Np is instance b’s con-
text; returns the path of b that is comparable to and has the highest similarity to m

1. if End(m) is literal then

2. return arg max,en,, PtCmp(m,n) Sim(End(m), End(n))

3. elseif End(m) is URI then

4. if Ipath n€ Ny, PtCmp(m,n) A End(m) = End(n) then
5. return arg max,e Ny, PtCmp(m,n)AEnd(m)=End(n) Wn
6. else

7. return null

Naive (Algorithm 1) adopts the bag-of-paths approach to
compare the comparable paths in the context of two ontol-
ogy instances. PtC'mp determines if two paths are compa-
rable; Si¢m calculates the string similarity between the last
nodes of two paths. For each path (m) of instance a, the al-
gorithm compares its last node to that of every comparable
path of instance b and chooses the highest similarity score,
denoted as ps. To assign a weight for ps, the average of the
weight (W,,,) of m and the weight (W,,) of path n of instance
b that has the highest similarity to m is used. The process is
repeated for every path of a. A weighted average on such
(path score, path weight) pairs is computed to be the final
similarity score between the two instances.



The Naive algorithm can be simplified to be Equation 1:

- Siepaths (Dw; * ps;) 0

Sim(a,b
( Eiepathspwi

where paths denotes the paths of instance a; ¢ is one of such
paths; ps; and pw; are the maximum path similarity of path ¢
to its comparable paths from instance b and the correspond-
ing path weight respectively. Assuming context graphs have
branching factor n and depth d, then the runtime complexity
of Naive for a single pair of instances is O(n??). The key
factor here is the number of paths contained in the context.
N aive can be very time-consuming for large context. There-
fore, one important question here is: Can we only consider
paths that could potentially make a significant contribu-
tion to the final similarity score between two instances to
reduce the overall computational cost?

4 Algorithm

In this section, we propose two pruning techniques to reduce
the overall complexity of the Natve algorithm. Although an
instance may have a large number of paths in its context,
only those that could potentially make a significant contri-
bution to the final similarity measure should be considered.
Based upon this idea, Equation 1 is changed to Equation 2:

Sim(a,b) =
Eiepaths’ (sz * psz) + Zjepaths” (pwj * eStj)
EiEpaths/pwi + EjEpaths”pu}j

@

where i is one of the paths of instance a that have already
been considered by the algorithm; j is one of the paths that
have not been covered; est; and pw; are the estimated simi-
larity (the potential contribution) of path j to its comparable
paths from instance b and its path weight respectively; the
combination of paths’ and paths” is the entire context of a.

The intuition is that an entity coreference algorithm could
safely ignore the rest of the context of an instance when it
reaches a boundary. This boundary is a place where the con-
tribution of the remaining context cannot over turn the cur-
rent decision made based upon the already considered con-
text. In other words, with the estimated path similarity est;
for the remaining paths of instance a, if the similarity be-
tween the two instances cannot be greater than a pre-defined
threshold, the algorithm should stop at the current path to
save computational cost, i.e. it prunes the rest of the context.

Algorithm 3 shows the pseudo code of the modified al-
gorithm. The key modification is at line 3. The algorithm
Continue determines if ComparePruning should con-
tinue to process the next path in the context by estimating the
similarity between a and b based on the potential similarity
score of the end node of each remaining path in instance a’s
context. In the C'ontinue algorithm, Utility denotes a util-
ity function to determine if it is worth performing such an
estimation (line 5-14): 1) if we do not want to use the util-
ity function (i.e., samplingOnly is true), we will directly
go to line 5 to perform an estimation; 2) if we use the utility
function, we calculate the utility of performing an estimation
(w). If this utility is less than O (v < 0), we will return true to
process the next path; otherwise, we perform an estimation.

Algorithm 3 ComparePruning(samplingOnly, No, Ny), N, and Ny, are
the context collected for instances a and b respectively; samplingOnly indicates
if the algorithm will use the utility function; returns the similarity between a and b

1. score < 0, weight < 0
2. for all paths meN, do

3. if Continue(samplingOnly, score, weight, N, Pos(m)) then
4. if 3path n€N,, PtCmp(m, n) then
5. n < Comparison(m, Ny);

6. if n # null then

7. ps < Sim(End(m), End(n))
8. pw < (W, + Wp)/2

9. score <— score + ps * pw

10. weight <— weight + pw

11, else

12. return 0

13. return -total=score

total-weight

We shall present the details of the C'ontinue algorithm in
the rest of this section.

Sampling Based End Node Similarity Estimation

Algorithm 4 presents the details of the C'ontinue function
adopted in Algorithm 3. As discussed in Section 3, each path
has a weight and here we prioritize the paths based upon
their weight, i.e., paths with higher weight will be consid-
ered first. A perfect match on high-weight paths indicates
that the algorithm should continue to process the remain-
ing context; while a mismatch on high-weight paths could
help the algorithm to stop at appropriate places for non-
coreferent instance pairs before wasting more efforts. Here,

Algorithm 4 Continue(samplingOnly, score, weight, Ng, index,),
samplingOnly indicates if the algorithm will use the utility function; score and
weight are the sum of the end node similarity and their corresponding weight of the
already considered paths; N, is the context of instance a; index, is the index of
path m;; returns a boolean value

1. if samplingOnly is false then

2. u < Utility(index,,, |[Nq|)

3. if w < O then

4. return true

5. current «+ ufe";’;]:t

6. for all paths m’ €N, do

7. m’.est < the estimated end node similarity for path m’
8. if m’ has not been considered and m’.est > current then
9. score < score + m’.est * m'.weight

10. weight < weight + m’.weight

11. if 222752 > 0 then

12.  return true

13. else

14.  return false

score and weight are the sum of the end node similarity and
their corresponding path weight. They represent the similar-
ity (current) between two instances based upon the already
considered context. When calculating the potential similar-
ity score between the two instances, we only consider the
remaining paths whose estimated node similarity (m’.est) is
no less than current (line 7) since paths whose estimated
end node similarity is smaller than current will only lower
the final similarity measure.



Our entity coreference algorithm (ComparePruning)
computes coreference relationships by measuring the sim-
ilarity between end nodes of two paths. So, one key factor to
apply our pruning technique is to appropriately estimate the
similarity that the last node of a path could potentially have
with that of its comparable paths of another instance (est
in Equation 2), i.e., the potential contribution of each path.
The higher similarity that a path has, the more contribution
it could make to the final score between two instances.

Since our algorithm only checks if two URIs are identical,
Equation 3 is used to estimate URI end node similarity for
an object value of a set of comparable properties:

_ A{tlt =< s,p,0bj > Nt € G}

P,obj) =
est(G, P, obj) {tlt =< s,p,xz >Nt e G}

,pE P

3)
where G is an RDF graph; P is a set of comparable object
properties; obj is a specific object for any property in P;
t is a triple and z represents any arbitrary object value of
properties in P. It represents how likely one URI node would
meet an identical node in RDF graph G and we calculate it as
the estimated similarity for each specific object of property
p € P. Similarly, we could compute the estimated similarity
for the subject values of all object properties.

To estimate for literal nodes, we randomly select a certain
number (¢) of literal values of a property, conduct a pairwise
comparison among all the selected literals, and finally get
the estimated similarity score as shown in Equation 4 (see
next page). Here, P is a set of comparable datatype proper-
ties; Subset(G, P) randomly selects a certain number of lit-
eral values of P, such as 01 and o, whose similarity is com-
puted with the function Sim; v is a percentage value that
controls how many pairwise comparisons should be covered
in order to give the estimated node similarity. The intuition
here is to find a sufficiently high similarity score as the po-
tential similarity between two literal values of P in order to
reduce the chance of missing too many coreferent pairs. In
this case, such estimation is calculated with respect to each
individual property.

Utility Based Decision Making

As described in Algorithm 3, before we actually process
each path in the context, we perform an estimation (line 3,
samplingOnly being true) such that if the potential similar-
ity between two instances would be below a threshold, we
just stop considering the rest of the context. However, per-
forming estimations has a computational cost in the entity
coreference process. Suppose the algorithm stops after con-
sidering k paths, then £ estimations were actually performed
according to the sampling based technique. However, if the
algorithm knew that it would stop after considering k paths,
it should have only performed one estimation at the kth path.
To maximally avoid those unnecessary estimations, we ask:
Can we perform estimations only when needed?

Based upon the discussion above, in order to further re-
duce the overall complexity of the entity coreference pro-
cess, we define a utility function as shown in Figure 2.
Suppose we reach a decision node d/n (there are n paths in
total and the algorithm is now at the dth path), we would then

[[] Decision () Chance

Node Node
Rewards
Py~ quit ------- Cost(n-d) - C,
real
== -C

d/n computation

real
computation

Figure 2: Utility Function

need to decide whether we want to perform an estimation
(EST vs. =EST). The general decision making process is
described as follows:

e If we choose not to do estimation (—E ST, then the only
choice is to perform a real computation. For a path m of
instance a, the algorithm will find all paths comparable to
m from the context of instance b and compute the similar-
ity by following line 4 to 10 in Algorithm 3. We will not
have any rewards by going this route;

e If we perform an estimation at node d/n (EST), then
there could be two different outcomes:

— The algorithm will quit (with probability p;) because
it estimates that this pair of instances are not similar to
a pre-defined level (their estimated similarity score is
lower than # in Algorithm 4). In this case, we have re-
wards Cost(n—d), where n is the total number of paths
of instance a, d is the current path number, Cost(n—d)
is the cost of performing real computations for the rest
n — d paths, i.e., Cost(n — d) = (n — d) * C,. with C,
being the cost of doing a real computation for a path.
Here, we also spent some time (C.) for an estimation;

— If the algorithm continues based upon the estimation
results, then the rewards will be —C, because there is
no gain but an estimation has been performed.

Summarizing all possibilities, the utilities for actions EST
and = E'ST are formally defined in Equations 5 and 6:

EU(EST) =
pax (Cost(n —d) — Ce) + (1 — pg) * (—C.) 5)

EU(=EST) =0 (6)

where p is the probability that the algorithm stops at the dth
path. We perform an estimation when the marginal utility
given in Equation 7 is a positive value (line 2 of Algorithm
4) otherwise a real computation is executed.
Utility = EU(EST) — EU(-EST)
pd*(n_d)*cr_pd*ce_ce+pd*ce:
pax(n—d)*C. —Ce 7
To estimate the parameters for each category of instances,
we randomly select a small number of instances (o) for each



{(01,02)|01, 02 € Subset(G, P) A Sim(o1,02) < score}| S

est(G, P) = arg min

score |{(01,02)|01,02 € Subset(G,P)}|

category and run the sampling based algorithm on them.
Then, we compute the average time for performing an es-
timation (C.) and a real computation (C).) respectively. We
adopt Equation 8 to estimate the probability that the algo-
rithm stops at the dth path (pg).

|The algorithm stopped at the dth pathl|
Pa =

8
|The algorithm passed d paths| ®)

5 Evaluation

We evaluate our pruning techniques on two RDF datasets:
RKB (Glaser, Millard, and Jaffri 2008) and SWAT>. The
SWAT RDF dataset was parsed from the downloaded XML
files of CiteSeer and DBLP. Both datasets describe publi-
cations and share some information; but they use different
ontologies and their coverage is also different. We compare
on 3 instance categories with 100K randomly selected in-
stances for each: RKB Person, RKB Publication and SWAT
Person. The groundtruth was provided as owl:sameAs state-
ments and can either be crawled from RKB or downloaded
from SWAT.

Our system is implemented in Java and we conduct all
experiments on a Sun Workstation with an 8-core Intel
2.93GHz processor and 3GB memory. We compare the per-
formance of 3 systems: Naive (Song and Heflin 2010), the
sampling based algorithm (Sampling) and the system that
combines sampling and the utility function (Utility). We re-
port a system’s best F1-Score (for precision and recall) from
threshold 0.3-0.9. We split each 100K dataset into 10 non-
overlapping and equal-sized subsets, run all algorithms on
the same input and report the average. We also test the sta-
tistical significance on the results of the 10 subsets from two
systems via a two-tailed t-test. On average, there are 6,096,
4,743 and 684 coreferent pairs for each subset of RKB Per-
son, RKB Publication and SWAT Person respectively.

We have the following parameters in our system: v (Equa-
tion 4) is the percentage of pairwise similarities to be cov-
ered to estimate literal node similarity; 6§ (Algorithm 4) de-
termines if an instance pair is still possible to be coreferent; €
is the number of literal values selected for literal node simi-
larity estimation; and «v is the number of instances to be used
for estimating the parameters in our utility function. We set
v, 0, € and « to be 0.95, 0.2, 1,000 and 200 respectively
and use the same values for all experiments and it took 110
and 78 seconds to estimate literal end node similarity for the
RKB dataset and the SWAT dataset respectively.

Pruning Based Entity Coreference Results

Table 1 shows the evaluation results by applying the three
different entity coreference algorithms on the ten subsets
of the three 100K subsets. Speedup is the speedup factor
on the runtime of different algorithms computed as follow-

fho- _ Runtime of Naive
ng: Speedup " Runtime of Baseline/Sampling/Utility* We

3http://swat.cse.lehigh.edu/resources/data/

4)

also compare to a baseline where we simply choose paths
whose weight is higher than a threshold 5 (0.01, 0.02,...,
0.10). Here, we use low values for § since the calculated
path weights are typically very low.

Table 1: Entity Coreference Results. P and R represent precision and recall re-
spectively; F1 is the F1-score for P and R; Baseline(/3) means only using paths with
weight higher than 3.

Dataset System P R F1 Speedup
Naive 94.04 | 90.13 | 92.02 1
Baseline (0.02) | 95.49 | 87.58 | 91.33 9.47
Baseline (0.03) 95.75 87.15 91.22 13.01
Baseline (0.04) | 95.51 86.00 | 90.48 16.28
RKB Person Baseline (0.05) | 95.64 | 84.98 89.97 20.57
Baseline (0.06) | 95.83 | 79.72 | 87.00 23.09
Sampling 94.02 90.46 92.21 10.43
Utility 9421 | 9039 | 92.26 15.61
Naive 99.69 | 99.13 | 99.41 1
Baseline (0.01) | 99.61 9945 | 99.53 32.39
Baseline (0.02) | 99.71 | 98.95 | 99.33 56.63
Baseline (0.03) | 99.69 | 96.83 | 98.24 59.64
RKB Pub R
Baseline (0.04) | 99.56 | 93.25 | 96.30 61.13
Baseline (0.05) | 99.56 | 87.42 | 93.10 63.26
Sampling 99.44 | 98.81 99.13 22.62
Utility 99.44 | 9897 | 99.21 29.11
Naive 99.29 | 91.24 | 95.07 1
Baseline (0.01) | 99.27 | 91.25 | 95.07 12.57
SWAT Peron | Baseline (0.10) | 99.70 | 90.85 | 95.06 34.57
Sampling 99.28 | 91.24 | 95.07 28.72
Utility 99.28 | 91.24 | 95.07 34.62

With our proposed pruning techniques, both Sampling
and Utility run much faster than Naive. Particularly, with
the utility function, the system Utility was able to achieve
even higher speedup factors than Sampling. On the other
hand, while successfully scaling the Naive algorithm, both
Sampling and Utility still maintain comparable F1-scores
to that of Naive on all datasets. As shown in Table 1, they
both achieve even higher Fl-scores than Naive on RKB
Person, although their Fl1-score is only slightly lower than
that of Naive on RKB Publication. The improvements on
the person datasets come from higher precision since the
pruning techniques can help to remove some paths where
non-coreferent instances happen to have similar values (e.g.,
two distinct person instances could have identical date for
their publications). A statistical test on the F1-scores shows
that the difference between Naive and Sampling/Utility
on RKB Publication is significant with P values of 0.0001
and 0.0024 respectively.

Compared to the baseline, Utility achieves better or
equally good F1-scores on person datasets, though it is not as
good as the baseline on RKB Publication. On RKB Person,
the baseline ($=0.04-0.06) has higher speedup with signif-
icantly lower F1; when f is low, it has higher F1-scores at
the cost of runtime. On SWAT Person, the baseline (5=0.10)
achieves a comparable speedup factor to Utility with minor



difference in Fl-score. Surprisingly, on RKB Publication,
our simple baseline (8=0.01,0.02) has better performance
than Utility on both F1-score and speedup factor. One pos-
sible reason could be that matching publications is relatively
easy since the titles can generally provide sufficient informa-
tion; thus simply cutting off those redundant paths by setting
appropriate thresholds could greatly speed up the process
while achieving good F1-scores.

Although the baseline outperforms Utility on RKB Pub-
lication, the actual users will probably have to tune the sys-
tem to find out the best 5 values for different datasets. Ac-
cording to Table 1, 0.03, 0.01 and 0.10 could be the best 3
values for RKB Person, RKB Publication and SWAT Per-
son respectively. However, if we adopt the same value (e.g.,
0.10) in all cases, the baseline could potentially suffer from
having low F1-scores on some datasets. Thus, the baseline
may not be the best choice in terms of generality.

Scaling to Larger Scale

We run Naive, Sampling and Utility on up to 20K ran-
domly selected instances from each of the three instance cat-
egories to show the capability of the proposed pruning tech-
niques in scaling the entity coreference process at different
scales. We only test on up to 20K instances since Naive
does not scale to larger scale due to insufficient memory.
Figure 3 shows the runtime speedup factor of Sampling
and Utility compared to Naive on the three instance cate-
gories. Sampling alone enables the entity coreference pro-

speedup factor

2K 4K 6K 8K 10K 12K 14K 16K 18K 20K
instances

——RKB Person Sampling ~ —4—RKB Publication Sampling —+«SWAT Person Sampling

—#—RKB Person Utility ——RKB Publication Utility —8—SWAT Person Utility

Figure 3: Runtime Speedup Factor

cess to run 20 to 30 times faster. When combined with the
utility function, the system Ut:lity achieves a significantly
higher speedup factor of about 25 to 40 for all three datasets.
The actual runtime (seconds) for Utility to process 20K in-
stances is 700, 2,934 and 878 for RKB Person, RKB Publi-
cation and SWAT Person respectively.

6 Conclusion

In this paper, we propose two sampling and utility function
based pruning techniques to build a scalable entity corefer-
ence system. With the sampling technique, we estimate the
potential contribution of RDF nodes in the context of an in-
stance and prune the context that would not make signifi-
cant contribution to the final coreference similarity measure.

Furthermore, we define a utility function that measures the
cost of performing such estimation in order to avoid those
unnecessary estimations. We evaluate our proposed prun-
ing techniques on three Semantic Web instance categories.
While maintaining comparably good F1-scores, our system
runs 15 to 35 times faster than a naive system that considers
all RDF nodes in a given context. For future work, it would
be interesting to explore how to automatically learn the ap-
propriate parameter values. Also, we will test our system on
more domains, such as geographic and life sciences.

7 Acknowledgments

This project was partially sponsored by the U.S. Army Re-
search Office (W911NF-11-C-0215). The content of the in-
formation does not necessarily reflect the position or the pol-
icy of the Government, and no official endorsement should
be inferred.

References

Aswani, N.; Bontcheva, K.; and Cunningham, H. 2006. Mining
information for instance unification. In The 5th International Se-
mantic Web Conference, 329-342.

Bagga, A., and Baldwin, B. 1998. Entity-based cross-document
coreferencing using the vector space model. In COLING-ACL, 79—
85.

Bhattacharya, 1., and Getoor, L. 2007. Collective entity resolution
in relational data. TKDD 1(1).

Bizer, C.; Heath, T.; and Berners-Lee, T. 2009. Linked data - the
story so far. Int. J. Semantic Web Inf. Syst. 5(3):1-22.

Glaser, H.; Millard, L.; and Jaffri, A. 2008. Rkbexplorer.com: A
knowledge driven infrastructure for linked data providers. In The
5th European Semantic Web Conference (ESWC), 797-801.

Gooi, C. H., and Allan, J. 2004. Cross-document coreference on a
large scale corpus. In HLT-NAACL, 9-16.

Halpin, H.; Hayes, P. J.; McCusker, J. P.; McGuinness, D. L.; and
Thompson, H. S. 2010. When owl: sameas isn’t the same: An
analysis of identity in linked data. In 9th International Semantic
Web Conference (ISWC), 305-320.

Han, H.; Giles, C. L.; Zha, H.; Li, C.; and Tsioutsiouliklis, K. 2004.
Two supervised learning approaches for name disambiguation in
author citations. In JCDL, 296-305.

Hassell, J.; Aleman-Meza, B.; and Arpinar, 1. B. 2006. Ontology-
driven automatic entity disambiguation in unstructured text. In 5th
International Semantic Web Conference (ISWC), 44-57.

Hu, W.; Chen, J.; and Qu, Y. 2011. A self-training approach for
resolving object coreference on the semantic web. In Proceedings
of the 20th International Conference on World Wide Web, 87-96.
Jean-Mary, Y. R.; Shironoshita, E. P.; and Kabuka, M. R. 20009.
Ontology matching with semantic verification. Journal of Web Se-
mantics 7(3):235-251.

Noessner, J.; Niepert, M.; Meilicke, C.; and Stuckenschmidt, H.
2010. Leveraging terminological structure for object reconcilia-
tion. In 7th Extended Semantic Web Conference (ESWC), 334-348.
Sais, F.; Pernelle, N.; and Rousset, M.-C. 2009. Combining a
logical and a numerical method for data reconciliation. Journal on
Data Semantics XII 12:66-94.

Song, D., and Heflin, J. 2010. Domain-independent entity corefer-
ence in RDF graphs. In Proceedings of the 19th ACM Conference
on Information and Knowledge Management (CIKM), 1821-1824.



