
Domain-Independent Entity Coreference in RDF Graphs

Dezhao Song
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015

des308@lehigh.edu

Jeff Heflin
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015

heflin@cse.lehigh.edu

ABSTRACT
In this paper, we present a novel entity coreference algo-
rithm for Semantic Web instances. The key issues include
how to locate context information and how to utilize the con-
text appropriately. To collect context information, we select
a neighborhood (consisting of triples) of each instance from
the RDF graph. To determine the similarity between two in-
stances, our algorithm computes the similarity between com-
parable property values in the neighborhood graphs. The
similarity of distinct URIs and blank nodes is computed by
comparing their outgoing links. To provide the best possible
domain-independent matches, we examine an appropriate
way to compute the discriminability of triples. To reduce
the impact of distant nodes, we explore a distance-based
discounting approach. We evaluated our algorithm using
different instance categories in two datasets. Our experi-
ments show that the best results are achieved by including
both our triple discrimination and discounting approaches.

Categories and Subject Descriptors
I.2.6 [Learning]: Knowledge acquisition

General Terms
Algorithms, Experimentation, Theory

Keywords
Discriminability, Entity Coreference, Semantic Web

1. INTRODUCTION
The purpose of entity coreference is to decide if different

mentions (person names, place names, ontology instances,
etc) in documents (free text, web pages, etc) refer to the
same real world entity. The entity coreference task is chal-
lenging primarily due to two general aspects: how to locate
context information for each mention and how to utilize the
context in an appropriate way. To collect context infor-
mation, we can utilize the documents where the mentions

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
CIKM’10, October 26–30, 2010, Toronto, Ontario, Canada.
Copyright 2010 ACM 978-1-4503-0099-5/10/10 ...$10.00.

occur. On the other hand, it is really significant to use the
context appropriately. Name variations, the use of abbrevi-
ations, and misspellings can all affect the final results. Also,
context information from heterogeneous sources may not be
complete. For instance, two documents may describe differ-
ent aspects of a person. The name and affiliation can appear
in one document while the other one can have name, date
of birth, email address, etc. In addition, there may be noise
in the data provided.

In this paper, we present a novel entity coreference algo-
rithm for ontology instances. Given a pair of instances of
comparable classes, our algorithm tells if they are corefer-
ent, i.e., they refer to the same real world entity, such as
the same person or publication. As a preprocessing step,
we learn the discriminability of each triple, taking into ac-
count its predicate. Then we use an expansion process to
extract a neighborhood graph to serve as the context for
each instance from the dataset (an RDF graph). We com-
pare the triples in the graphs of different instances, taking
into account the discriminability of their predicates, as well
as applying a discount according to each triple’s distance to
the root node (the ontology instance). We show that using
a combination of discriminability and discounting results in
an F1-score ranging from 86.7% to 96.7% for two types of
ontology instances and two distinct datasets. This perfor-
mance is better than using neither feature, as well as better
than using either feature alone.

2. RELATED WORK
Entity coreference, also known as entity resolution or en-

tity matching, has been the subject of much research. Bagga
and Baldwin [2] employ a vector space model to do cross-
document entity coreference on mentions in free text. Gooi
and Allan [3] employ three different statistical models for
entity coreference on person mentions. They use a window
size of 55 words centered on a mention to collect context.
Mann and Yarowsky [6] utilize an unsupervised clustering
technique over a feature space for coreference. They extract
more representative information from web pages, such as
biographical information.

In the Semantic Web, Hassel et al. [4] propose an on-
tology driven disambiguation algorithm to match instances
from an ontology created from the DBLP bibliography [5]
to mentions in DBWorld documents1, using several features,
such as the co-occurrence relationship. Differently, Aswani
et al. [1] propose an algorithm for matching two ontology

1http://www.cs.wisc.edu/dbworld/

instances. One of their focuses is to exploit the web to find
information to support the coreference process.

3. ENTITY COREFERENCE ALGORITHM
In this section, we formally present our entity coreference

algorithm, including how to locate and appropriately utilize
context information and the core algorithm.

3.1 Selecting a Neighborhood Graph
In our current approach, we use the RDF graph as the

sole source of context information. Starting from the root
node, i.e., an ontology instance, we expand it by searching
for triples whose subject (object) equals to its URI. For such
triples, if their objects (subjects) are still URIs or blank
nodes, then we repeat this expansion process to get more
triples until we reach a predefined depth limit or a literal
value, whichever comes first. Upon completing our search,
we have a neighborhood/context consisting of a set of paths
for each ontology instance, starting from that instance and
ending with a URI or a literal value. A path is defined
as follows: path = (r, p1, n1, ..., pn, nn), where r is the root
node, ni(i > 0) is any expanded RDF node and pi is a
predicate in the path.
We use the function N(G, i) to represent the paths for

instance i given a RDF graph G. We denote the RDF node
at the rear of a path as E(path), where path∈N(G, i). We
do not record paths that end in blank nodes because such
paths provide little information about an instance. However,
we rely on paths that go through blank nodes to get further
literals and URIs. Based on experimentation, we found that
a depth limit of 2 provides sufficient context information to
perform coreference in the RDF graph.

3.2 Calculating Path Weights
Generally, each triple has its own importance, reflecting

its possible level of discrimination to the ontology instance
from which it originally comes from. Our approach, given
a dataset, takes the entire dataset (triples) as input and
automatically learns the discriminabilities regardless of the
domain. Thinking broadly, we can measure the discrim-
inability of a triple by looking at what its predicate is. As
for a predicate, the more diverse value set it has, the more
discriminative it will be. Equation 1 computes the predicate
discriminability.

Perpi =
number of distinct objects of pi
number of occurrences of pi

(1)

where Perpi represents a percentage value for predicate pi.
We record the max percentage value as Permax and nor-
malize all percentage values so that the most discriminative
predicate has a discriminability of 1. Recall from section
3.1, that during the expansion process we try a URI or a
blank node both as a subject and object (i.e., a predicate
may be used in the subject-to-object direction or the object-
to-subject one). Thus a predicate could have two discrim-
inabilities in different directions. For a given predicate pi, we
denote a predicate’s discriminabilities in the two directions
as Ppi and P−

pi , respectively.
When counting the size of the distinct object or subject

value set, we assume that if any two objects/subjects have
distinct syntactic forms, then they truly represent differ-
ent things. However, because RDF/OWL does not make
a unique name assumption, they could actually represent

Figure 1: Assign Weight to Neighborhood Graph

the same real world entity, resulting in an overestimation of
the discriminability. But if we assume that for every predi-
cate such unknown coreferent relationships occur uniformly
throughout the dataset, we actually overestimate all pred-
icates by the same proportion. Thus our current approach
still gives reasonable discriminability.

With the learned discriminability, we assign each path in
the neighborhood graph a weight, indicating its importance
to the root node. The weight combines two elements, the
learned discriminability and a discount value. Figure 1 dis-
plays how we assign the weight to each path. In Figure 1,
when we expand the root, we get nodes 1, 2 and 3 and we
reach nodes 4, 5, 6, and 7 by further expanding node 2, so
on and so forth. P1 and P2 represent the discriminabilities
for the two triples ending with node 2 and 5 respectively.
We also add another parameter to each node called its fac-
tor, indicating how important a node is to its parent node.
The factor evenly distributes a parent node’s weight among
all of its children, thus the value of factor F1 in the figure
is one-third. Using factors and the learned discriminability,
we take a distance-based discounting approach to assign a
weight to a path as shown in Equation 2:

Wpath =

length(path)∏
i=1

Pi ∗ Fi (2)

where the length function counts the number of predicates in
a path; Pi and Fi represent the ith triple’s discriminability
in the path and the factor of its subject/object node respec-
tively. This distance-based discounting approach minimizes
the effect of potentially noisy nodes that result from deep
expansion of the neighborhood graph.

3.3 Algorithm Design
Once we have identified the neighborhood graph for each

instance and computed the weight for each path, we are
ready to perform entity coreference. Algorithm 1 presents
the pseudo code for our entity coreference algorithm for on-
tology instances. In this description, the function Comp tells
if two paths are comparable; JW computes a Jaro-Winkler
TFIDF score between two literals.

The essential idea is that we adopt the bag-of-paths ap-
proach to compare paths between ontology instances, such
as instanceA and B. For each path (pathA) of instanceA,
we compare its rear node to the rear node of every path
of instanceB with a comparable sequence of predicates and
choose the highest similarity score, denoted as path scoreA.
Also, we need to determine the weight of this path score,
denoted as path weight, using the average of the weight

Algorithm 1 Compare(Na, Nb), Na is the context N(G,a)
and Nb is N(G,b)

1. total score← 0, total weight← 0
2. for all paths m∈Na do
3. if ∃path n∈Nb, Comp(m,n) then
4. path score← 0, path weight← 0
5. if E(m) is literal then
6. path score
7. ← maxn′∈Nb,Comp(m,n′) JW (E(m), E(n′))
8. /*path n′ has the highest JW score with m*/
9. path weight← (Wm +Wn′)/2

10. else if E(m) is URI then
11. if ∃path n′∈Nb, Comp(m, n’), E(m)=E(n’) then
12. path score← 1
13. /*path n′ has identical rear node with m*/
14. path weight← (Wm +Wn′)/2
15. end if
16. end if
17. total score← total score+path score∗path weight
18. total weight← total weight+ path weight
19. end if
20. end for
21. return total score/total weight

(weightA) of pathA and that (weightB) of the path of in-
stanceB with which pathA has the highest similarity score.
We need to repeat the process for every path of instanceA.
With the pairs of (path score, path weight) for a pair of in-
stances, we calculate their weighted average as the final sim-
ilarity measure between them. The same process is repeated
for all pairs of ontology instances of comparable categories,
i.e., person-to-person and publication-to-publication. Algo-
rithm 1 only shows the process to compare two instances;
this comparison is repeated for each pair of instances in a
given instance set.
As we described, we will compare instanceA’s paths with

paths of instanceB, which raises the question of how we know
that the predicate sequences of two paths are comparable.
In some situations, the comparability of predicates is not
very clear, such as predicates “author-on” and“edit-on”. For
a publication, a person that did some edits on it does not
necessarily have to be listed as an author of it. We say
two predicates are comparable if the knowledge base (KB)
entails that one is the subproperty of another (obviously,
this means equivalent properties are also comparable). For
our experiments, we created these mapping axioms manu-
ally. For example, the following two predicates are compa-
rable “full-name” and “pretty-name”. Furthermore, in our
current implementation, we only check the comparability of
the last predicate (treated as a composition predicate) from
two paths to determine path comparability while ignoring
the others. Note, we also use entailment to determine if two
classes are comparable.
Another challenge is that we cannot make a closed-world

assumption, some information can be missing from the orig-
inal RDF graph. We address this problem by not applying
penalties to URI mismatches. This means that if the URI
rear node of pathA of instanceA doesn’t match any rear
node of comparable paths of instanceB, we do not add any
weight to the total weight. Second, we do not apply any
penalties on missing information. If there isn’t any path of
instanceB that is comparable to pathA of instanceA, still we

do not apply any penalties. We compare every path present
in the context and apply appropriate penalties; in the mean-
while, any mismatches that might be caused by information
incompleteness cannot simply be treated as real mismatches.

4. EVALUATION
We evaluate our algorithm on person and publication in-

stances from the RKB dataset2 and on person instances from
the SWAT dataset3. To form our RKB dataset, we picked
eight subsets from the entire RKB dataset: ACM, DBLP,
CiteSeer, EPrints, IEEE, LAAS-CNRS, Newcastle and ECS.
As for our SWAT dataset, the data is parsed from XML
dumps of CiteSeer and DBLP. The transformation from the
original XML files into RDF was done by the SWAT re-
search lab at Lehigh University. Although the two datasets
share some information, the main differences are: (1) they
use different ontologies with different predicates. (2) their
coverage could be different. (3) some information may be
ignored from the original XML files for the SWAT dataset
during transformation. The owl:sameAs statements are re-
moved from each dataset before evaluation, and used when
evaluating the results of the algorithms.

To increase the ambiguity of our test sets, we randomly
picked 1,601 person and 2102 publication instances from the
RKB dataset and 1010 person instances from the SWAT
dataset through a filtering process. If the names/titles of
two instances have a similarity score higher than 0.5 but are
still said not to be coreferent based upon the groundtruth,
we will put this pair of instances into an instance pool. Then
we apply our algorithm on every pair of instances in each of
the three test sets. In our evaluations, we use the standard
measures, precision, recall and F1-score.

There are a few things to note. First, RKB provides
coreference groundtruth between instances in the form of
owl:sameAs statements. We verified such groundtruth by
manually checking 300 coreferent pairs of person and publi-
cation instances respectively. Furthermore, to ensure the
completeness of RKB groundtruth, we manually checked
the “wrongly” detected pairs from a comparison system (to
be described later) that obtains the lowest precision and
were able to add 295 coreferent pairs to the RKB person
groundtruth. For the SWAT dataset, the authors hand-
labeled the groundtruth. Additionally, we materialize all
coreferent pairs that can be achieved through transitivity
reasoning since the owl:sameAs predicate is transitive.

We compare our proposed algorithm to some comparison
systems with a subset of the features we have presented. The
features include: expansion (E#) (# represents the depth of
expansion), triple discriminability (P), discount (D) which
is implemented with the factor. The comparison systems are
as follows: E1, E1-P, E2, E2-P, E2-D, E2-P-D. For example,
our proposed algorithm (E2-P-D) uses depth 2 expansion
and includes discount and predicate discriminability to form
path weight. We adapt Equation 2 to compute different path
weights for other systems.

Figures 2(a), 2(b) and 3 show the F1-scores of RKB pub-
lication, RKB person and SWAT person instances respec-
tively. Although our entity coreference algorithm (E2-P-D)
is often bested at lower thresholds, it can achieve the best
or nearly the best performance at higher thresholds. On the

2http://www.rkbexplorer.com/data/
3http://swat.cse.lehigh.edu/resources/data/index.html

(a) RKB Publication (b) RKB Person

Figure 2: RKB Results

Figure 3: SWAT Results

RKB person instances, its best score (at threshold 0.8) is
2% lower than E2-P’s best F1-score (at threshold 0.6), but
its best F1-score is better in the other two test sets. The
F1-score that our algorithm achieves for RKB publication,
RKB person and SWAT person is 96.7%, 86.7% and 93.5%
at threshold 0.7, 0.8 and 0.9 respectively. Compared to E1
where no proposed feature is used, E2 finds a larger neigh-
borhood graph. But without discounts and discriminability,
it is clearly worse than E1 for RKB publication and SWAT
person; however, interestingly for RKB person, E2 performs
better than E1 from 0.3 to 0.7 but is surpassed by E1 at
0.8 and 0.9. Furthermore, E1-P is better than or as good
as E1 and E2-P is better than E2 for RKB publication and
SWAT person at all thresholds, showing the effectiveness of
predicate discriminability. For RKB person, E2-P is better
than E2 at low thresholds from 0.3 to 0.6 but they start
to have relatively the same performance from 0.7 to 0.9.
Note that sometimes the curve for E1-P or E1 is not clear
because they are overlapping. Additionally, the difference
between E2 and E2-D shows that by only applying factor
discounts can also give us a significant improvement par-
ticularly for RKB publication instances and SWAT person
instances. There is still some improvement for RKB per-
son instances but not as significant as shown in the other
two test sets. Last, our proposed algorithm E2-P-D, com-
pared to E2-D, shows better results for RKB publications
at all thresholds and for SWAT person at 0.9. This verifies
the effectiveness of using predicate discriminability. When
comparing to E2-P, E2-P-D shows significant improvement
for RKB publication from 0.6 to 0.9 and SWAT person in-
stances at 0.8 and 0.9. For full details of the experiment,
please refer to our technical report [7].
The results show certain advantages of our approach; how-

ever, there are a few points to discuss. First, as we ap-

ply higher thresholds, recall generally goes down for all sys-
tems (due to space limitations, recall graphs are not shown).
One possible solution is an iterative approach that, at each
step, merges the context of instances that are very similar.
Second, currently, we do not apply penalties for URI mis-
matches or missing information. We don’t want to sacrifice
recall while still having a good control on precision by ex-
ploiting appropriate weights and context information. In
the future, we will explore appropriate ways to better ad-
dress this issue. Finally, our bag-of-paths approach can hurt
the results in some cases because it ignores some underlying
semantics. For example, although comparing only the last
predicate of two paths speeds up the process, the fact is that
if intermediate predicates or nodes are not comparable, then
the paths should not be comparable.

5. CONCLUSION AND FUTURE WORK
In this paper, we propose an entity coreference algorithm

for Semantic Web instances. Our algorithm finds a neighbor-
hood graph of an instance as its context information. With
our discriminability learning scheme and the distance-based
discounting approach, we assign a weight to each path in
the context. We adopt a bag-of-paths approach to compute
the similarity measure between instances pairwisely. Our
algorithm is verified with three test sets and it achieves the
best performance on two of them. For future work, we plan
to try some iterative entity coreference algorithm in order
to apply appropriate penalties on URI mismatches. Also,
we are interested in exploring some graph-based matching
algorithms because, essentially, the context for an ontology
instance is not a set of paths but a graph.

6. REFERENCES
[1] N. Aswani, K. Bontcheva, and H. Cunningham. Mining

information for instance unification. In International
Semantic Web Conference, pages 329–342, 2006.

[2] A. Bagga and B. Baldwin. Entity-based cross-document
coreferencing using the vector space model. In
COLING-ACL, pages 79–85, 1998.

[3] C. H. Gooi and J. Allan. Cross-document coreference on
a large scale corpus. In HLT-NAACL, pages 9–16, 2004.

[4] J. Hassell, B. Aleman-Meza, and I. B. Arpinar.
Ontology-driven automatic entity disambiguation in
unstructured text. In International Semantic Web
Conference, pages 44–57, 2006.

[5] M. Ley. The DBLP computer science bibliography:
Evolution, research issues, perspectives. In SPIRE,
pages 1–10, 2002.

[6] G. S. Mann and D. Yarowsky. Unsupervised personal
name disambiguation. In Proceedings of the seventh
conference on Natural language learning at
HLT-NAACL, pages 33–40, 2003.

[7] D. Song and J. Heflin. Domain-independent entity
coreference in RDF graphs. Technical report, Lehigh
University, LU-CSE-10-004, 2010.

