Abstract

Identifying data instances, that come from different sources but denote the same entity is necessary for effective integration of Semantic Web data. This “instance coreference” identification problem has gained attention in recent years. Although this is a critical aspect of the overall information integration problem in the Semantic Web, we put forward that information integration algorithms also need to be extended in order to work effectively and efficiently in the presence of these coreferenced entities (whether they are discovered by a tool or explicitly stated with an owl:sameAs assertion). We describe such an extension to our Goal Node Search algorithm for Semantic Web information integration.

1 Introduction

Record duplication and data linkage have been widely studied in the database area [Elmagarmid et al., 2007]. In the Semantic Web community similar issues are being examined under the “instance coreference” research area [Nikolov et al., 2008]. Solving the instance coreference problem is critical to achieving web-wide information interoperability and integration. So far the Semantic Web community’s primary focus in this area has been to identify coreferent entities using ontological information and various machine learning techniques. However, identifying these coreferences is only part of the solution.

Whether they are identified using a tool or explicitly asserted using owl:sameAs, handling distributed coreferenced entities poses some interesting challenges. Suppose we want to get a list of academic papers in computer science written by authors who have been advised by Marvin Minsky. We can get information about Minsky’s advisees from the AI Genealogy Project (AIGP)\(^1\) and a list of authors of academic papers in computer science from the computer science bibliography web site DBLP\(^2\). These two sites use different URI schemes for the records and therefore the same entities (the advisees/authors in this case) will generally be syntactically dissimilar. For example, Eugene Charniak is referred to by http://aigp.eecs.umich.edu/researcher/show/489 in AIGP and by http://www.informatik.uni-trier.de/~ley/db/indices/a-tree/c/Charniak:Eugene.html in DBLP.

Let us assume that each of these websites have a Semantic Web version where they expose their data in OWL\(^3\) format (i.e. they are OWL knowledge bases). There are 4532 researchers listed in the AIGP website and most of them have more than one article in DBLP. Therefore, the number of coreferent entities in these two knowledge bases will be at least around 4000. However, Marvin Minsky has only 20 advisees. Furthermore, coreferent instances for organization, places etc. that are available in the knowledge bases are not relevant to the query. Therefore, most of the coreference information is superfluous in answering the query about papers written by Minsky’s advisees. When dealing with large knowledge bases this issue becomes more pronounced. For example, DBPedia\(^4\) and Geonames\(^5\) have about about 80,000 coreferent entities and Geonames and the CIA world factbook\(^6\) has about 100,000 coreferent entities. Given that coreference is transitive, one can clearly see how this information can grow very fast. Since reasoning is an expensive process it is prudent that we keep the size of our knowledge base to a minimum and develop an approach that can reduce this “wastage” by using only the coreference information relevant to a query.

In this paper we propose an approach that addresses several of the issues described above. Specifically we make the following two technical contributions.

1. We put forward that information integration algorithms need to be extended in order to work effectively and efficiently in the presence of coreferent entities.
2. We describe an extension to our Goal Node Search (GNS) algorithm [Qasem et al., 2008b] that handles coreferent entities in an efficient manner.

The rest of the paper is organized as follows: In Section 2, we describe Ontology Based Information Integrator (OBII),

\(^1\)http://aigp.eecs.umich.edu/
\(^2\)http://www.informatik.uni-trier.de/~ley/db/
\(^3\)http://www.w3.org/TR/owl-ref/
\(^4\)http://dbpedia.org/
\(^5\)http://www.geonames.org/
\(^6\)https://www.cia.gov/library/publications/the-world-factbook/
a distributed query answering system in which we have implemented our extension of the GNS algorithm. In Section 3, we describe our initial solution in details. In Section 4, we discuss some related work with our approach and in Section 5 we conclude and discuss future work.

2 OBII: A Semantic Web query answering system

OBII is a Semantic Web query answering system that uses a “source selection” framework [Qasem et al., 2008a] and answers distributed extensional queries posed in SPARQL7 syntax.

The source selection framework is an approach for identifying the minimal set of potentially relevant Semantic Web data sources for a given query. These selected sources are then loaded into a Description Logic (DL) reasoner, and processed to obtain the answer(s) to the query. The framework assumes that the Semantic Web is composed of a large number of relatively small data sources (similar to web pages). These sources are files that must be loaded in their entirety or not at all. The relevance of a data source to a query is expressed by a meta data referred to as the “REL” statement. A data source provider can use REL statements to summarize the contents of a data source in terms of classes whose instances the data source has information about and the properties used to relate them.

In the source selection framework “map” ontologies are used to align heterogeneous ontologies. The map ontologies are like any other OWL ontology except they consist solely of axioms that relate concepts from one ontology to concepts of another ontology. The term domain ontologies is used to refer to all other ontologies.

OBII has a plug-in architecture and can use any algorithm that is compatible with the source selection framework. We have extended one such algorithm (the GNS algorithm) to handle instance coreferences in an effective and efficient manner. We will discuss the GNS algorithm in Section 3. This will be done in the context of demonstrating why an extension to the algorithm is needed and explaining our design choices in developing the extension. For an extended exposition of the GNS algorithm readers are referred to Qasem et al. [2008b].

GNS is designed to work with a subset of OWL DL (a decidable and commonly used fragment of OWL) called OWL for Information Integration (OWLII) [Qasem et al., 2008a]. This sublanguage is compatible with Global-As-View (GAV) [Garcia-Molina et al., 1997] and Local-As-View (LAV) [Levy et al., 1996] rules. Let \(B(\overline{X}) \) and \(H(\overline{X}) \) (sometimes subscripted) be unary or binary atoms with a vector \(\overline{X} \) of arguments. A GAV rule has the form \(H(\overline{X}) \rightarrow B_1(\overline{X}_1) \land B_2(\overline{X}_2) \land \ldots \land B_n(\overline{X}_n) \), where the left hand side of the \(\rightarrow \) is called the head and the right hand side is called the body. A LAV rule has the form \(H(\overline{X}) \subseteq B_1(\overline{X}_1), B_2(\overline{X}_2), \ldots, B_m(\overline{X}_m) \) where the left hand side of the \(\subseteq \) is called the head and the right hand side is called the body. From a knowledge representation point of view, a GAV rule is essentially equivalent to a Horn clause without function symbols and a LAV rule is a First Order Logic (FOL) implication with a single antecedent and multiple consequents.

Figure 1 shows the architecture of OBII with arrows indicating the flow of information when processing a query. OWLIIRuleProcessor translates the OWL ontologies and REL meta statements into LAV/GAV rules. The SourceSelector implements the GNS algorithm and AnsweringEngine loads the selected sources into KAON28 (a DL reasoner) and obtains the answer to a query after the reasoning.

The REL statements can be expressed as LAV rules (with some minor modifications for denoting the URI of a source). OWLIIRuleProcessor translates the domain and map ontologies into a set of LAV/GAV rules and stores them in a MapView object. OWLIIRuleProcessor translates the set of REL statements into LAV rule and source URL pairs and store them in a SourceView object. A collection of MapView objects and SourceView objects is maintained by MapKB.

3 GNS Extension: an Initial Solution

In this section we first describe the GNS algorithm and show why it is inadequate in handling instance coreferences. We then describe our proposed extension that handles instance coreferences in an effective and efficient way.

3.1 The GNS

Given a conjunctive query and a set of LAV/GAV rules, the GNS algorithm identifies all possible additional subgoals that can be found by applying the LAV/GAV rules to each query subgoal or its expansions. Identifying these subgoals can be viewed as a search problem where each node of the search tree is either an original or an expanded subgoal; and the search task is to identify all possible paths that can be derived from applying the LAV/GAV rules to the nodes. As the search space for the algorithm is the set of all possible expanded goal nodes, it is referred to as the Goal Node Search algorithm.

In GNS, the search is implemented by maintaining two lists: an open list of nodes to be expanded and a closed list of nodes that have been expanded. The algorithm continues to

8http://kaon2.semanticweb.org/

Figure 1: OBII architecture diagram with arrows showing the flow of information when processing a query.
expand the open list until it is empty while adding the node that has been expanded to the closed list and adding the expanded new nodes to the open list. The open list is initialized with goal nodes created from the subgoals of the query to give us the starting point of the search. The GNS is shown in Algorithm 1.

Algorithm 1 Goal Node Search.

GNS(Query q, MapViews mv, SourceViews sv)
1: ol = ∅
2: cl = ∅
3: selectedSources = ∅
4: expandedNodes = ∅
5: ol ← INIT-FROM-QUERY(q)
6: while ol ≠ ∅ do
7: n ← ol.pop()
8: if not cl.contains(n) then
9: expandedNodes ← ∅
10: for each v ∈ omaps do
11: if GAV(v) and UNIFY(n, HEAD(v)) then
12: expandedNodes ← expandedNodes ∪ EXPAND(n, v)
13: else if LAV(v) and UNIFY(n, b) for some b ∈ BODY(v) then
14: expandedNodes ← expandedNodes ∪ EXPAND(n, v)
15: end for
16: ol ← ol ∪ expandedNodes
17: cl.add(n)
18: for each n ∈ cl do
19: for each v ∈ sv do
20: if LAV(v) and UNIFY(n, b) for some b ∈ BODY(v) then
21: selectedSources ← selectedSources ∪ LAVEXPAND(n, v)
22: return selectedSources

The routines HEAD(v) and BODY(v) return the head or the body of given rule. If the head of a GAV rule unifies with the goal node, the expansion includes a set of nodes corresponding to the body of the GAV rule. If any atom from the body of a LAV rule unifies with the node, then the expansion includes the head of the LAV rule. In both cases, variables from the goal node are substituted into the generated nodes.

In order to guarantee termination, i.e. to avoid cyclic expansion, we check if a node is already in the closed list before expanding it. Furthermore, for efficiency of storage, in addition to not expanding nodes that are already in the closed list, the GNS prunes nodes that are also superseded by a node in the closed list. A node n supersedes another node m if the result from a query using m’s predicate is necessarily a superset of the result from a query using n’s predicate. Syntactically, n supersedes m if there is a unification involving only substitutions to variables from n. For example, p(x, y) supersedes p(x, CONST) but p(x, x) does not supersede p(CONST1, CONST2) where CONST1 is not equal to CONST2 etc. Using a supersede relationship between nodes as opposed to a strict match to decide if a node has been expanded allows the algorithm to keep only the most general node in the list. This reduces the size of the list that is maintained. This “special contains” is implemented in the cl.contains routine (line 8). In determining the supersede relationship, cl.contains essentially performs a one sided unification test.

The algorithm has found all possible expansions when the open list is empty. The REL statements (stored in MapKB as SourceView objects) are then used to complete the source selection process. If a node in the closed list unifies with the body of a Source View, the source URL is extracted and added to the list of selected data sources that will be loaded in the reasoner. All the relevant sources are loaded in their entirety into a reasoner and then the original query is issued and the results obtained from the reasoner.

3.2 Handling Instance Coreference

We first motivate the need for special processing of instance coreferences with an example shown in Table 1. Consider a more restricted version of the query about academic papers introduced in Section 1: we want a list of academic papers written by Marvin Minsky’s advisees who live in Washington DC. In the example we use lowercase letters to refer to variables and string constants as a shorthand notation for the URIs.

If all coreferent instances used canonical identifiers (i.e. they were not coreferent instances at all) then the livesIn(x, Washington-DC) atom of the query would have been processed by GNS as follows. The atom would unify with the head of the GAV rule and would have been expanded to hasHome and locatedIn atoms. Then those atoms would unify with the body of the two REL statements from the real estate and the white page web site and the two sources would have been loaded into the reasoner. In processing the complete query other atoms would have been expanded similarly by the maps whose heads or bodies unify with those atoms and other relevant sources would have been loaded. Finally, in answering the query all necessary joins from all the selected relevant sources would have been performed by the reasoner (e.g. data about locatedIn(h, District-of-Columbia) and hasHome(x, h) should join in the binding of h etc.)

However, in the example (just like the Web) there are several coreferent instances. Therefore, if we cannot provide relevant equivalence information to the algorithm it will produce incomplete answers and in some cases will be inefficient. The algorithm needs equivalence information during the unify process of both node expansion (line 12, line 14) and source selection (line 20). For example, livesIn(x, Washington DC) will not unify with livesIn(x, DC) as the second argument of the atoms will not match. Similarly, in select-
ing relevant sources, locatedIn(h, DC) will fail to match with REL statements atom locatedIn(h, District-of-Columbia).

In addition to completeness, coreferent instances also play a role in the efficiency of the GNS algorithm. Recall from Section 3.1, the closed list uses a special contains function to prune nodes that are superseded by a node that is already in the closed list. Consider, that we have a node author(x, GNS) in the closed list (i.e. it has already been expanded) and we are about to expand a node author(x, Goal-Node-Search). We should not expand this node, provided we can determine if author(x, Goal Node Search) is superseded by author(x, GNS). Clearly, if we can provide the equivalence information (GNS is same as Goal-Node-Search) during this determination (line 8 cl.contains function) GNS will not expand author(x, Goal-Node-Search).

We observe that in the presence of coreferent instances, a DL reasoner will fail to identify join conditions that require the knowledge of equivalence information between two syntactically different entities. Therefore, OBII will fail to join data from selected sources if the bindings of the join variable(s) from different sources use different URIs. In our example query, adviseeOf(x, Minsky) ∧ author(x, p) ∧ livesIn(x, Washington-DC), the bindings of x from different sources will most likely be coreferent instances (e.g. in Section 1 we have mentioned how Eugene Charniak is referred to using different names (e.g., Eugene C. Charniak)).

It is apparent from the above discussion that in order for the GNS and the DL reasoner to work effectively and efficiently in the presence of coreferent instances, we need to provide equivalence information of all URIs used by the system in answering a given query. We now discuss one possible solution to this problem.

We assume that the equivalence information is available in the Semantic Web as owl:sameAs statements that are asserted in various OWL files. We can use a meta data "RELSameAsDoc" to let a system know where to find these owl:sameAs statements. A RELSameAsDoc statement of the form RELSameAs(doc, {URI1, URI2, ..., URIk}) states that doc has equivalence information about the set of URIs {URI1, URI2, ..., URIk}. Note that there may be many different equivalence classes in the set but in order to keep our meta data compact we have chosen not to express that here.

In our proposed solution we introduce an abstract data type EquivalenceKB. It collects and organizes equivalence information about URIs. EquivalenceKB essentially supports the disjoint set data structure operations [Cormen et al., 2001] on sets of equivalence classes of all known URIs.

EquivalenceKB defines a function GET-ALL-EQUIVALENTS(URI) which returns the equivalence class of the URI (both direct and inferred equivalences). The EquivalenceKB has a variable URI, which stores a list of all URIs whose equivalence information is available in the EquivalenceKB. The EquivalenceKB also defines an UPDATE-EQUAL-KB method (described in Algorithm 2) which updates the EquivalenceKB with newly discovered equivalence information.

The method UPDATE-EQUAL-KB is supported by a private method ADD-TO-KB, which adds equivalence information represented as a set of URI pairs to the internal storage of the EquivalenceKB. EquivalenceKB does not specify the exact mechanism of how the equivalence information is stored. That decision is left up to the specific implementation. We describe one such implementation later in this section.

The EquivalenceKB also uses the following auxiliary methods. The method DOCS-WITH-SAMEAS, given a URI, will return the documents that have owl:sameAs statements about that URI. This method is used in line 7 in Algorithm 2. We can implement this method by creating an inverted index of RELSameAs statements. The method EXTRACT-SAMEAS used in line 9 will retrieve all the URI pairs that are subjects and objects of owl:sameAs statements given an OWL file.

In our extension of the GNS that handles coreferent instances we implement a MATCH-EQ function that takes two URIs as arguments and returns true if it finds a match between the two URIs or any member of their respective equivalent classes (obtained by calling GET-ALL-EQUIVALENTS). We then implement a UNIFY-EQ routine that uses MATCH-EQ to compare the arguments of atoms being unified. We use UNIFY-EQ instead of the regular UNIFY in lines 12, 14 and 20 in Algorithm 1. In addition we use UNIFY-EQ to perform the one sided unification in cl.contains. Since, UNIFY-EQ takes into account the equivalence information of the URIs, it will perform as desired during both node expansion and source selection in the presence of coreferent instances and cl.contains will produce an optimal closed list.

The extension described above is based on the assumption that at system startup the EquivalenceKB contains equivalence information of all URIs known to the system at that time. Therefore, at system startup we call UPDATE-EQUAL-KB with a list of all known URIs to pre-compute all the equivalence classes. This pre-computation approach makes the system less dynamic. The issues related to a more dynamic EquivalenceKB are discussed in Section 5.

In order to ensure that the reasoner has all the relevant equivalence information to perform joins, we need to load all the equivalence information about all the URIs in ev-

Algorithm 2 UPDATE-EQUAL-KB

```plaintext
UPDATE-EQUAL-KB(EquivalenceKB, list of URI ul)
1: if ul = ⊘ then
2: return
3: else
4: ul ← ul \ EquivalenceKB.URI
5: EquivalenceKB.URI ← EquivalenceKB.URI ∪ ul
6: for each u ∈ ul do
7: listOfDocs ← listOfDocs ∪ DOCS-WITH-SAMEAS(u)
8: for each d ∈ listOfDocs do
9: sameAsPairs ← EXTRACT-SAMEAS(d)
10: ADD-TO-KB(sameAsPairs)
11: newURIs ← newURIs ∪ all individual URIs from sameAsPairs
12: ul ← newURIs \ EquivalenceKB.URI
13: UPDATE-EQUAL-KB(EquivalenceKB, ul)
```
large number of to the facts, Hawkeye provides several ontology maps and a from a diverse set of real-world data sources. In addition eye is a knowledge base, that contains 166 million facts obtained from hash table look ups). Then for each URI in the unioned set we replace (or add in case of a new URI) their corresponding entries in the hash table with the unioned set.

We have implemented EquivalenceKB using a hash table. The key set of the table is the set of all URIs known to the system and the value entries are their respective equivalence classes. The method ADD-TO-KB works as follows. For each equivalent URI pair we union their equivalence classes (obtained from hash table look ups). Then for each URI in the unioned set we replace (or add in case of a new URI) their corresponding entries in the hash table with the unioned set.

We have evaluated the performance of EquivalenceKB using data from the Hawkeye project Pan et al., 2007. Hawkeye is a knowledge base, that contains 166 million facts from a diverse set of real-world data sources. In addition to the facts, Hawkeye provides several ontology maps and a large number of owl:sameAs statements to align the ontologies and the data from these sources. We have used 202,383 owl:sameAs statements which align URIs from AIGP, Citeseer and DBLP websites. We ran our experiments on a PC with 3 GB of RAM. The EquivalenceKB took about 3 seconds to build and occupied 7 MB of heap space. One thousand calls to the function GET-ALL-EQUIVALENTS completed in less than half a second.

The number of GET-ALL-EQUIVALENTS call per query will depend on the number of URIs encountered by the system during the source selection and loading. The selectivity of the query, the number of URIs used in the maps that are considered for matching and the number of URIs in the data sources will all contribute to this number. At present we are working on generating synthetic data which will allow us to evaluate the system in a range of scenarios. We however, hypothesize based on our initial analysis of Hawkeye data that a reasonably selective query will require less than 1000 GET-ALL-EQUIVALENTS calls.

4 Related Work

In the database area, the instance coreference problem is investigated under the overall umbrella of record duplication and data linkage research. Although these are widely studied topics, authoritative surveys [Winkler, 2006; Rahm and Do, 2000] of the research agenda in this area suggest that scalability issues have been addressed mostly for record duplication detection algorithms [Herschel and Naumann, 2008]. The systems that remove detected record duplicates work in batch mode and therefore are not subject to a stringent efficiency requirement. The requirement for such instance-level integration of Semantic Web data are different as the integration needs to occur during query time to account for the dynamic nature of the Web.

The Semantic Web community’s primary focus in the area of instance coreference has been to identify coreferent entities using ontological information and various machine learning techniques Nikolov et al., 2008. This is a critical element of the overall information integration problem, but as we have argued in the paper, successfully identifying these coreferences is only part of the solution. There is one notable exception. The OKKAM project Bouquet et al., 2007 proposes a centralized approach to the problem we are addressing. The Entity Name System (ENS) proposed and implemented in the OKKAM project provides global re-usable identifiers for coreferenced entities in the Semantic Web. This is an efficient solution as this does not require a system to load equivalence information during query time. However, the success of this scheme depends on how widely the scheme is adopted by data providers and how quickly the central database can be updated when equivalence information becomes available.

Distributed Description Logic (DDL) offers reasoning service for multiple semantically related ontologies by the use of mappings to combine the inferences of local reasoning of each ontology Borgida and Serafini, 2003. The focus of DDL research, however, is mostly on ontological queries (queries about classes and properties and their relationships). Serafini et al. have recently extended one such DDL system to accommodate data sources and perform instance retrieval queries Seraphin and Tamlin, 2007. However, it is not clear how the system will perform with a large number of coreferent instances.

Call et al. 2002 have described an algorithm that answers extensional queries (queries about the data as opposed to the schema) posed to a data integration system where the data models are ontological in nature as opposed to relational. Their focus however is in handling complexity in the presence of integrity constraints. Their solution is based on a global schema and they do not address scalability.

We have looked at works on efficient indexing of large RDF repositories. Tous and Delgado 2006 handle a large quantity of RDF information in a sparse matrix. Liarou et al. 2007, use Distributed Hash Tables (DHT) to index and locate relevant RDF data sources. Both of these works address issues of general RDF query processing whereas our requirement is very specific: a large collection of owl:sameAs statements (possibly) distributed in many physical files over the Web and we have a singular query which is to retrieve all the direct and inferred equivalent URIs of a given URI.

5 Conclusion and Future Work

In this paper we have argued that information integration algorithms need to be extended in order to work effectively and efficiently in the presence of coreferenced entities. We have described one such extension to the GNS algorithm. Our main objective in this paper is to draw attention of the Semantic Web community to the issue of efficient handling of coreferenced instances. We believe this issue has not received the attention it deserves. Although, the extension we propose addresses the problem we pose, we need to examine and evaluate our implementation more extensively to validate our solution.

We note that an alternative solution to the instance coreference handling problem in GNS is to store owl:sameAs axioms in the MapKB, in addition to the LAV/GAV rules. We can store equivalence axioms in the form u1=u2, and then al-
low these rules to match any nodes containing u1(u2) and expand to a node where it is replaced by u2(u1). However, this will significantly increase the size of the KB and the search tree.

At present we pre-compute all the equivalence classes during system startup. However, the system can be more dynamic and the EquivalenceKB more compact, if the EquivalenceKB can be created at query time seeded only by the URIs present in the query (i.e., calling UPDATE-EQUAL-KB with seed URIs that are mentioned in the query). One issue with this approach is that it does not handle the situation where no URIs are mentioned in the query, but equivalence information is needed to establish joint conditions between two sources. This could be remedied by calls to UPDATE-EQUAL-KB with new seeds anytime new URIs are used to answer the query, whether as part of the goal node, in a map, or in selected sources. We plan to implement this dynamic approach in the near future and compare its performance with the current implementation and determine if the time penalty for having a more dynamic EquivalenceKB is worth the freshness of the equivalence information.

Although our current implementation provides a very fast lookup time and the in-memory hash table’s performance was sufficient for the data set we used, a strict in-memory implementation will not scale up to Web size data. We are exploring other more scalable options.

Acknowledgments

We are grateful to the U.S. Department of Energy for supporting this work under the DE-FG02-05ER84171 SBIR grant.

References

