
Towards Scalable Information Integration with Instance Coreferences

Abir Qasem
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015, USA

abir.qasem@gmail.com

Dimitre A. Dimitrov
Tech-X Corporation

5621 Arapahoe Avenue, Suite A
Boulder, CO 80303, USA

dad@txcorp.com

Jeff Heflin
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015, USA

heflin@cse.lehigh.edu

Abstract
Identifying data instances, that come from differ-
ent sources but denote the same entity is neces-
sary for effective integration of Semantic Web data.
This “instance coreference” identification problem
has gained attention in recent years. Although this
is a critical aspect of the overall information inte-
gration problem in the Semantic Web, we put for-
ward that information integration algorithms also
need to be extended in order to work effectively
and efficiently in the presence of these coreferenced
entities (whether they are discovered by a tool or
explicitly stated with an owl:sameAs assertion).
We describe such an extension to our Goal Node
Search algorithm for Semantic Web information in-
tegration.

1 Introduction
Record duplication and data linkage have been widely stud-
ied in the database area [Elmagarmid et al., 2007]. In the
Semantic Web community similar issues are being examined
under the “instance coreference” research area [Nikolov et
al., 2008]. Solving the instance coreference problem is crit-
ical to achieving web-wide information interoperability and
integration. So far the Semantic Web community’s primary
focus in this area has been to identify coreferent entities using
ontological information and various machine learning tech-
niques. However, identifying these corefernces is only part
of the solution.

Whether they are identified using a tool or explicitly
asserted using owl:sameAs, handling distributed corefer-
enced entities poses some interesting challenges. Suppose
we want to get a list of academic papers in computer
science written by authors who have been advised by Marvin
Minsky. We can get information about Minsky’s advisees
from the the AI Genealogy Project (AIGP)1 and a list of
authors of academic papers in computer science from the
computer science bibliography web site DBLP2. These
two sites use different URI schemes for the records and
therefore the same entities (the advisees/authors in this case)

1http://aigp.eecs.umich.edu/
2http://www.informatik.uni-trier.de/ ley/db/

will generally be syntactically dissimilar. For example,
Eugene Charniak is referred to by http://aigp.eecs.
umich.edu/researcher/show/489 in AIGP and by
http://www.informatik.uni-trier.de/~ley/
db/indices/a-tree/c/Charniak:Eugene.html
in DBLP.

Let us assume that each of these websites have a Semantic
Web version where they expose their data in OWL3 format
(i.e. they are OWL knowledge bases). There are 4532 re-
searchers listed in the AIGP website and most of them have
more than one article in DBLP. Therefore, the number of
coreferent entities in these two knowledge bases will be at
least around 4000. However, Marvin Minsky has only 20 ad-
visees. Furthermore, coreferent instances for organization,
places etc. that are available in the knowledge bases are not
relevant to the query. Therefore, most of the coreference in-
formation is superfluous in answering the query about pa-
pers written by Minsky’s advisees. When dealing with large
knowledge bases this issue becomes more pronounced. For
example, DBPedia4 and Geonames5 have about about 80,000
coreferent entities and Geonames and the CIA world fact-
book6 has about 100,000 coreferent entitities. Given that
coreference is transitive, one can clearly see how this infor-
mation can grow very fast. Since reasoning is an expensive
process it is prudent that we keep the size of our knowledge
base to a minimum and develop an approach that can reduce
this “wastage” by using only the coreference information rel-
evant to a query.

In this paper we propose an approach that addresses sev-
eral of the issues described above. Specifically we make the
following two technical contributions.

1. We put forward that information integration algorithms
need to be extended in order to work effectively and ef-
ficiently in the presence of coreferent entities.

2. We describe an extension to our Goal Node Search
(GNS) algorithm [Qasem et al., 2008b] that handles
coreferent entities in an efficient manner.

The rest of the paper is organized as follows: In Section 2,
we describe Ontology Based Information Integrator (OBII),

3http://www.w3.org/TR/owl-ref/
4http://dbpedia.org/
5http://www.geonames.org/
6https://www.cia.gov/library/publications/the-world-factbook/



a distributed query answering system in which we have im-
plemented our extension of the GNS algorithm. In Section 3,
we describe our initial solution in details. In Section 4, we
discuss some related work with our approach and in Section
5 we conclude and discuss future work.

2 OBII:A Semantic Web query answering
system

OBII is a Semantic Web query answering system that uses
a “source selection” framework [Qasem et al., 2008a] and
answers distributed extensional queries posed in SPARQL7

syntax.
The source selection framework is an approach for identi-

fying the minimal set of potentially relevant Semantic Web
data sources for a given query. These selected sources are
then loaded into a Description Logic (DL) reasoner, and pro-
cessed to obtain the answer(s) to the query. The framework
assumes that the Semantic Web is composed of a large num-
ber of relatively small data sources (similar to web pages).
These sources are files that must be loaded in their entirety
or not at all. The relevance of a data source to a query is ex-
pressed by a meta data referred to as the “REL” statement.
A data source provider can use REL statements to summa-
rize the contents of a data source in terms of classes whose
instances the data source has information about and the prop-
erties used to relate them.

In the source selection framework “map” ontologies are
used to align heterogeneous ontologies. The map ontologies
are like any other OWL ontology except they consist solely
of axioms that relate concepts from one ontology to concepts
of another ontology. The term domain ontologies is used to
refer to all other ontologies.

OBII has a plug-in architecture and can use any algo-
rithm that is compatible with the source selection framework.
We have extended one such algorithm (the GNS algorithm)
to handle instance coreferences in an effective and efficient
manner. We will discuss the GNS algorithm in Section 3.
This will be done in the context of demonstrating why an ex-
tension to the algorithm is needed and explaining our design
choices in developing the extension. For an extended expo-
sition of the GNS algorithm readers are referred to Qasem et
al. [2008b] .

GNS is designed to work with a subset of OWL DL (a
decidable and commonly used fragment of OWL) called
OWL for Information Integration (OWLII) [Qasem et al.,
2008a]. This sublanguage is compatible with Global-As-
View (GAV) [Garcia-Molina et al., 1997] and Local-As-View
(LAV) [Levy et al., 1996] rules. Let B

(
X

)
and H

(
X

)
(sometimes subscripted) be unary or binary atoms with a vec-
tor X of arguments. A GAV rule has the form H(X) :-
B1(X1) ∧ B2(X2) ∧ . . . ∧ Bn(Xn), where the left hand
side of the :- is called the head and the right hand side
is called the body. A LAV rule has the form H(X) ⊆
B1

(
X1

)
, B2

(
X2

)
, . . . , Bm(Xm) where the left hand side

of the⊆ is called the head and the right hand side is called the
body. From a knowledge representation point of view, a GAV

7http://www.w3.org/TR/rdf-sparql-query/

rule is essentially equivalent to a Horn clause without func-
tion symbols and a LAV rule is a First Order Logic (FOL) im-
plication with a single antecedent and multiple consequents.

Figure 1 shows the architecture of OBII with arrows in-
dicating the flow of information when processing a query.
OWLIIRuleProcessor translates the OWL ontologies and
REL meta statements into LAV/GAV rules. The SourceSe-
lector implements the GNS algorithm and AnweringEngine
loads the selected sources into KAON28(a DL reasoner) and
obtains the answer to a query after the reasoning.

The REL statements can be expressed as LAV rules (with
some minor modifications for denoting the URI of a source).
OWLIIRuleProcessor translates the domain and map ontolo-
gies into a set of LAV/GAV rules and stores them in a
MapView object. OWLIIRuleProcessor translates the set of
REL statements into LAV rule and source URL pairs and
store them in a SourceView object. A collection of MapView
objects and SourceView objects is maintained by MapKB.

R1 Rn
REL

meta-data

M1 Mn

map

ontologies

O1 On
domain

ontologies

S1 Sn
data

sources

OWLIIRuleProcessor

Source Selector

Answering Engine
KAON2

rele
van

t map
ont

olo
gie

s

releva
nt domain ontol

ogies

relevant sources

MapKB LAV/GAV
rulesmaps

S
P
A
R
Q

L

so
ur

ce
U

R
L
s

User SPARQL

results

OBII

Figure 1: OBII architecture diagram with arrows showing the
flow of information when processing a query.

3 GNS Extension: an Initial Solution
In this section we first describe the GNS algorithm and show
why it is inadequate in handling instance coreferences. We
then describe our proposed extension that handles instance
coreferences in an effective and efficient way.

3.1 The GNS
Given a conjunctive query and a set of LAV/GAV rules, the
GNS algorithm identifies all possible additional subgoals that
can be found by applying the LAV/GAV rules to each query
subgoal or its expansions. Identifying these subgoals can be
viewed as a search problem where each node of the search
tree is either an original or an expanded subgoal; and the
search task is to identify all possible paths that can be de-
rived from applying the LAV/GAV rules to the nodes. As the
search space for the algorithm is the set of all possible ex-
panded goal nodes, it is referred to as the Goal Node Search
algorithm.

In GNS, the search is implemented by maintaining two
lists: an open list of nodes to be expanded and a closed list of
nodes that have been expanded. The algorithm continues to

8http://kaon2.semanticweb.org/



expand the open list until it is empty while adding the node
that has been expanded to the closed list and adding the ex-
panded new nodes to the open list. The open list is initialized
with goal nodes created from the subgoals of the query to
give us the starting point of the search. The GNS is shown in
Algorithm 1.

Algorithm 1 Goal Node Search.
GNS(Query q, MapViews mv, SourceViews sv)

1: ol = �
2: cl = �
3: selectedSources = �
4: expandedNodes = �
5: ol← INIT-FROM-QUERY(q)
6: while ol 6= � do
7: n← ol.pop()
8: if not cl.contains(n) then
9: expandedNodes←�

10: omaps← {m | (n.ont, m) ∈ mv}
11: for each v ∈ omaps do
12: if GAV(v) and UNIFY(n, HEAD(v)) then
13: expandedNodes ∪ GAV-EXPAND(n, v)
14: else if LAV(v) and UNIFY(n, b) for some b ∈

BODY(v) then
15: expandedNodes ∪ LAV-EXPAND(n, v)
16: ol← ol ∪ expandedNodes
17: cl.add(n)
18: for each n ∈ cl do
19: for each v ∈ sv do
20: if LAV(v) and UNIFY(n, b) for some b ∈ BODY(v)

then
21: selectedSources ← selectedSources ∪ LAV-

EXPAND(n, v)
22: return selectedSources

The routines HEAD(v) and BODY(v) return the head or the
body of given rule. If the head of a GAV rule unifies with the
goal node, the expansion includes a set of nodes correspond-
ing to the body of the GAV rule. If any atom from the body of
a LAV rule unifies with the node, then the expansion includes
the head of the LAV rule. In both cases, variables from the
goal node are substituted into the generated nodes.

In order to guarantee termination, i.e. to avoid cyclic ex-
pansion, we check if a node is already in the closed list before
expanding it. Furthermore, for efficiency of storage, in addi-
tion to not expanding nodes that are already in the closed list,
the GNS prunes nodes that are also superseded by a node in
the closed list. A node n supersedes another node m if the
result from a query using n’s predicate is necessarily a super-
set of the result from a query using m’s predicate. Syntacti-
cally, n supersedes m if there is a unification involving only
substitutions to variables from n. For example, p(x, y) super-
sedes p(x,CONST) but p(x,x) does not supersede p(CONST1,
CONST2) where CONST1 is not equal to CONST2 etc. Us-
ing a supersede relationship between nodes as opposed to a
strict match to decide if a node has been expanded allows the
algorithm to keep only the most general node in the list. This
reduces the size of the list that is maintained. This “special

Query adviseeOf(x, Minsky) ∧ author(x,p)
∧ livesIn(x, Washington-DC)

GAV livesIn(x, DC) :- hasHome(x,h)
∧ locatedIn(h, DC)

REL 1 locatedIn(h, District-of-Columbia)
From a real state site

REL 2 hasHome(x, h)
From a “white page” service

Table 1: Example: Papers By Minsky’s Advisees Living in
DC

contains” is implemented in the cl.contains routine (line 8).
In determining the supersedes relationship, cl.contains essen-
tially performs a one sided unification test.

The algorithm has found all possible expansions when the
open list is empty. The REL statements (stored in MapKB
as SourceView objects) are then used to complete the source
selection process. If a node in the closed list unifies with
the body of a Source View, the source URL is extracted and
added to the list of selected data sources that will be loaded
in the reasoner. All the relevant sources are loaded in their
entirety into a reasoner and then the original query is issued
and the results obtained from the reasoner.

3.2 Handling Instance Coreference
We first motivate the need for special processing of instance
coreferences with an example shown in Table 1. Consider a
more restricted version of the query about academic papers
introduced in Section 1: we want a list of academic papers
written by Marvin Minsky’s advisees who live in Washing-
ton DC. In the example we use lowercase letters to refer to
variables and string constants as a shorthand notation for the
URIs.

If all coreferent instances used canonical identifiers (i.e.
they were not coreferent instances at all) then the livesIn(x,
Washington-DC) atom of the query would have been pro-
cessed by GNS as follows. The atom would unify with the
head of the GAV rule and would have been expanded to
hasHome and locatedIn atoms. Then those atoms would unify
with the body of the two REL statements from the real estate
and the white page web site and the two sources would have
been loaded into the reasoner. In processing the complete
query other atoms would have been expanded similarly by the
maps whose heads or bodies unify with those atoms and other
relevant sources would have been loaded. Finally, in answer-
ing the query all necessary joins from all the selected relevant
sources would have been performed by the reasoner (e.g. data
about locatedIn(h, District-of-Columbia) and hasHome(x, h)
should join in the binding of h etc.) .

However, in the example (just like the Web) there are sev-
eral coreferent instances. Therefore, if we cannot provide rel-
evant equivalence information to the algorithm it will pro-
duce incomplete answers and in some cases will be ineffi-
cient. The algorithm needs equivalence information during
the unify process of both node expansion (line 12, line 14)
and source selection (line 20). For example, livesIn(x, Wash-
ington DC) will not unify with livesIn(x, DC) as the second
argument of the atoms will not match. Similarly, in select-



ing relevant sources, locatedIn(h, DC) will fail to match with
REL statements atom locatedIn(h, District-of-Columbia).

In addition to completeness, coreferent instances also play
a role in the efficiency of the GNS algorithm. Recall from
Section 3.1, the closed list uses a special contains function to
prune nodes that are superseded by a node that is already in
the closed list. Consider, that we have a node author(x, GNS)
in the closed list (i.e it has already been expanded) and we
are about to expand a node author(x, Goal-Node-Search). We
should not expand this node, provided we can determine if au-
thor(x, Goal Node Search) is superseded by author(x, GNS).
Clearly, if we can provide the equivalence information (GNS
is same as Goal-Node-Search) during this determination (line
8 cl.contains function) GNS will not expand author(x, Goal-
Node-Search).

We observe that in the presence of coreferent instances, a
DL reasoner will fail to identify join conditions that require
the knowledge of equivalence information between two syn-
tactically different entities. Therefore, OBII will fail to join
data from selected sources if the bindings of the join vari-
able(s) from different sources use different URIs. In our ex-
ample query, adviseeOf(x, Minsky)∧ author(x,p)∧ livesIn(x,
Washington-DC), the bindings of x from different sources
will most likely be coreferent instances (e.g, in Section 1 we
have mentioned how Eugene Charniak is referred to using
different URIs in two different data sources) and therefore
will not join unless the reasoner is provided with the relevant
equivalence information.

It is apparent from the above discussion that in order for
the GNS and the DL reasoner to work effectively and effi-
ciently in the presence of coreferent instances, we need to
provide equivalence information of all URIs used by the sys-
tem in answering a given query. We now discuss one possible
solution to this problem.

We assume that the equivalence information is available
in the Semantic Web as owl:sameAs statements that are
asserted in various OWL files. We can use a meta data
“RELSameAsDoc” to let a system know where to find these
owl:sameAs statements. A RELSameAsDoc statement of
the form RELSameAs(doc, {URI1, URI2, ..., URIn}) states
that doc has equivalence information about the set of URIs
{URI1, URI2, ..., URIn}. Note that there may be many dif-
ferent equivalence classes in the set but in order to keep our
meta data compact we have chosen not to express that here.

In our proposed solution we introduce an abstract data type
EquivalenceKB. It collects and organizes equivalence infor-
mation about URIs. EquivalenceKB essentially supports the
disjoint set data structure operations [Cormen et al., 2001] on
sets of equivalence classes of all known URIs.

EquivalenceKB defines a function GET-ALL-
EQUIVALENTS(URI) which returns the equivalence class
of the URI (both direct and inferred equivalences). The
EquivalenceKB has a variable URI, which stores a list of
all URIs whose equivalence information is available in
the EquivalenceKB. The EquivalenceKB also defines an
UPDATE-EQUAL-KB method (described in Algorithm 2)
which updates the EquivalenceKB with newly discovered
equivalence information.

The method UPDATE-EQUAL-KB is supported by a private

Algorithm 2 UPDATE-EQUAL-KB
UPDATE-EQUAL-KB(EquivalenceKB, list of URI ul)

1: if ul = � then
2: return
3: else
4: ul← ul \ EquivalenceKB.URI
5: EquivalenceKB.URI← EquivalenceKB.URI ∪ ul
6: for each u ∈ ul do
7: listOfDocs ← listOfDocs ∪ DOCS-WITH-

SAMEAS(u)
8: for each d ∈ listOfDocs do
9: sameAsPairs←EXTRACT-SAMEAS(d)

10: ADD-TO-KB(sameAsPairs)
11: newURIs← newURIs ∪ all individual URIs from

sameAsPairs
12: ul← newURIs \ EquivalenceKB.URI
13: UPDATE-EQUAL-KB(EquivalenceKB, ul)

method ADD-TO-KB, which adds equivalence information
represented as a set of URI pairs to the internal storage of
the EquivalanceKB. EquivalanceKB does not specify the ex-
act mechanism of how the equivalence information is stored.
That decision is left up to the specific implementation. We
describe one such implementation later in this section.

The EquivalanceKB also uses the following auxiliary
methods. The method DOCS-WITH-SAMESAS, given a URI,
will return the documents that have owl:sameAs state-
ments about that URI. This method is used in line 7 in
Algorithm 2. We can implement this method by creating
an inverted index of RELSameAs statements. The method
EXTRACT-SAMEAS used in line 9 will retrieve all the URI
pairs that are subjects and objects of owl:sameAs state-
ments given a OWL file.

In our extension of the GNS that handles coreferent in-
stances we implement a MATCH-EQ function that takes two
URIs as arguments and returns true if it finds a match be-
tween the two URIs or any member of their respective equiv-
alent classes (obtained by calling GET-ALL-EQUIVALENTS).
We then implement a UNIFY-EQ routine that uses MATCH-
EQ to compare the arguments of atoms being unified. We use
UNIFY-EQ instead of the regular UNIFY in lines 12, 14 and 20
in Algorithm 1. In addition we use UNIFY-EQ to perform the
one sided unification in cl.contains. Since, UNIFY-EQ takes
into account the equivalence information of the URIs, it will
perform as desired during both node expansion and source se-
lection in the presence of coreferent instances and cl.contains
will produce an optimal closed list.

The extension described above is based on the assumption
that at system startup the EquivalanceKB contains equiva-
lence information of all URIs known to the system at that
time. Therefore, at system startup we call UPDATE-EQUAL-
KB with a list of all known URIs to pre-compute all the
equivalence classes. This pre-computation approach makes
the system less dynamic. The issues related to a more dy-
namic EquivalenceKB are discussed in Section 5.

In order to ensure that the reasoner has all the relevant
equivalence information to perform joins, we need to load
all the equivalence information about all the URIs in ev-



ery relevant source that is being loaded. We do this by
first extracting all equivalent URI pairs from a source that
is being loaded using EXTRACT-SAMEAS. We then apply
GET-ALL-EQUIVALENTS function to each individual URI
obtained from the equivalent pairs to get all the equivalence
classes for all the URIs in the sources being loaded. We then
add this equivalence information directly to the reasoner.

We have implemented EquivalenceKB using a hash table.
The key set of the table is the set of all URIs known to the
system and the value entries are their respective equivalence
classes. The method ADD-TO-KB works as follows. For each
equivalent URI pair we union their equivalence classes (ob-
tained from hash table look ups). Then for each URI in the
unioned set we replace (or add in case of a new URI) their
corresponding entries in the hash table with the unioned set.

We have evaluated the performance of EquivalenceKB us-
ing data from the Hawkey project [Pan et al., 2007]. Hawk-
eye is a knowledge base, that contains 166 million facts
from a diverse set of real-world data sources. In addition
to the facts, Hawkeye provides several ontology maps and a
large number of owl:sameAs statements to align the on-
tologies and the data from these sources . We have used
202,383 owl:sameAs statements which align URIs from
AIGP, Citeseer and DBLP websites. We ran our experiments
on a PC with 3 GB of RAM. The EquivalenceKB took about
3 seconds to build and occupied 7 MB of heap space. One
thousand calls to the function GET-ALL-EQUIVALENTS com-
pleted in less than half a second.

The number of GET-ALL-EQUIVALENTS call per query
will depend on the number of URIs encountered by the sys-
tem during the source selection and loading. The selectivity
of the query, the number of URIs used in the maps that are
considered for matching and the number of URIs in the data
sources will all contribute to this number. At present we are
working on generating synthetic data which will allow us to
evaluate the system in a range of scenarios. We however, hy-
pothesize based on our initial analysis of Hawkeye data that
a reasonably selective query will require less than 1000 GET-
ALL-EQUIVALENTS calls.

4 Related Work
In the database area, the instance corerefence problem is in-
vestigated under the overall umbrella of record duplication
and data linkage research. Although these are widely studied
topics, authoritative surveys [Winkler, 2006; Rahm and Do,
2000] of the research agenda in this area suggest that scal-
ability issues have been addressed mostly for record dupli-
cation detection algorithms [Herschel and Naumann, 2008].
The systems that remove detected record duplicates work in
batch mode and therefore are not subject to a stringent effi-
ciency requirement. The requirement for such instance-level
integration of Semantic Web data are different as the inte-
gration needs to occur during query time to account for the
dynamic nature of the Web.

The Semantic Web community’s primary focus in the area
of instance coreference has been to identify coreferent entities
using ontological information and various machine learning
techniques [Nikolov et al., 2008]. This is a critical element

of the overall information integration problem, but as we have
argued in the paper, successfully identifying these corefer-
nces is only part of the solution. There is one notable excep-
tion. The OKKAM project [Bouquet et al., 2007] proposes a
centralized approach to the problem we are addressing. The
Entity Name System (ENS) proposed and implemented in
the OKKAM project provides global re-usable identifiers for
coreferenced entities in the Semantic Web. This is an effi-
cient solution as this does not require a system to load equiv-
alence information during query time. However, the success
of this scheme depends on how widely the scheme is adopted
by data providers and how quickly the central database can
be updated when equivalence information becomes available.

Distributed Description Logic (DDL) offers reasoning ser-
vice for multiple semantically related ontologies by the use
of mappings to combine the inferences of local reasoning
of each ontology [Borgida and Serafini, 2003]. The focus
of DDL research, however is mostly on ontological queries
(queries about classes and properties and their relationships).
Serafini et al. have recently extended one such DDL system
to accommodate data sources and perform instance retrieval
queries [Serafini and Tamilin, 2007]. However, it is not clear
how the system will perform with a large number of corefer-
ent instances.

Calì et al. [2002] have described an algorithm that answers
extensional queries (queries about the data as opposed to the
schema) posed to a data integration system where the data
models are ontological in nature as opposed to relational.
Their focus however is in handling complexity in the pres-
ence of integrity constraints. Their solution is based on a
global schema and they do not address scalability.

We have looked at works on efficient indexing of large
RDF repositories. Tous and Delgado [2006] handle a large
quantity of RDF information in a sparse matrix. Liarou et al.
[2007], use Distributed Hash Tables (DHT) to index and lo-
cate relevant RDF data sources. Both of these works address
issues of general RDF query processing whereas our require-
ment is very specific: a large collection of owl:sameAs
statements (possibly) distributed in many physical files over
the Web and we have a singular query which is to retrieve all
the direct and inferred equivalent URIs of a given URI.

5 Conclusion and Future Work
In this paper we have argued that information integration al-
gorithms need to be extended in order to work effectively and
efficiently in the presence of coreferenced entities. We have
described one such extension to the GNS algorithm. Our
main objective in this paper is to draw attention of the Se-
mantic Web community to the issue of efficient handling of
coreferenced instances. We believe this issue has not received
the attention it deserves. Although, the extension we propose
addresses the problem we pose, we need to examine and eval-
uate our implementation more extensively to validate our so-
lution.

We note that an alternative solution to the instance coref-
erence handling problem in GNS is to store owl:sameAs
axioms in the MapKB, in addition to the LAV/GAV rules. We
can store equivalence axioms in the form u1=u2, and then al-



low these rules to match any nodes containing u1(u2) and ex-
pand to a node where it is replaced by u2(u1). However, this
will significantly increase the size of the KB and the search
tree.

At present we pre-compute all the equivalence classes dur-
ing system startup. However, the system can be more dy-
namic and the EquivalenceKB more compact, if the Equiv-
alenceKB can be created at query time seeded only by the
URIs present in the query (i.e. calling UPDATE-EQUAL-KB
with seed URIs that are mentioned in the query). One is-
sue with this approach is that it does not handle the situation
where no URIs are mentioned in the query, but equivalence
information is needed to establish join conditions between
two sources. This could be remedied by calls to UPDATE-
EQUAL-KB with new seeds anytime new URIs are used to
answer the query, whether as part of the goal node, in a map,
or in selected sources. We plan to implement this dynamic ap-
proach in the near future and compare its performance with
the current implementation and determine if the time penalty
for having a more dynamic EquivalanceKB is worth the fresh-
ness of the equivalence information.

Although our current implementation provides a very fast
lookup time and the in-memory hash table’s performance was
sufficient for the data set we used, a strict in-memory imple-
mentation will not scale up to Web size data. We are explor-
ing other more scalable options.

Acknowledgments
We are grateful to the U.S. Department of Energy for support-
ing this work under the DE-FG02-05ER84171 SBIR grant.

References
[Borgida and Serafini, 2003] A. Borgida and L. Serafini.

Distributed description logics: Assimilating information
from peer sources. Journal of Data Semantics, 1:153–184,
2003.

[Bouquet et al., 2007] Paulo Bouquet, Heiko Stoermer, and
Daniel Giacomuzzi. OKKAM: Enabling a web of entities.
In Proc. of the WWW2007 Workshop i3:Identity, Identifiers
and Identification, 2007.

[Calì et al., 2002] Andrea Calì, Diego Calvanese,
Giuseppe De Giacomo, and Maurizio Lenzerini. Data
integration under integrity constraints. In CAiSE ’02:
Proceedings of the 14th International Conference on Ad-
vanced Information Systems Engineering, pages 262–279,
London, UK, 2002. Springer-Verlag.

[Cormen et al., 2001] Thomas H. Cormen, Charles E. Leis-
erson, Ronald L. Rivest, and Clifford Stein. Introduction to
Algorithms: Second Edition. The MIT Press, Cambridge,
MA, 2001.

[Elmagarmid et al., 2007] Ahmed K. Elmagarmid, Panagio-
tis G. Ipeirotis, and Vassilios S. Verykios. Duplicate record
detection: A survey. IEEE Trans. on Knowl. and Data
Eng., 19(1):1–16, 2007.

[Garcia-Molina et al., 1997] H. Garcia-Molina, Y. Papakon-
stantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D. Ullman,

V. Vassalos, and J. Widom. The TSIMMIS approach to
mediation: Data models and languages. Journal of Intelli-
gent Information Systems, 8(2):117–132, 1997.

[Herschel and Naumann, 2008] Melanie Herschel and Felix
Naumann. Scaling up duplicate detection in graph data. In
CIKM ’08: Proceeding of the 17th ACM conference on In-
formation and knowledge management, pages 1325–1326,
New York, NY, USA, 2008. ACM.

[Levy et al., 1996] A. Y. Levy, A. Rajaraman, and J. J. Or-
dille. Querying heterogeneous information sources using
source descriptions. In 22nd International Conference on
Very Large Data Bases, Bombay, September 1996.

[Liarou et al., 2007] E. Liarou, S. Idreos, and
M. Koubarakis. Continuous RDF query processing
over DHTs. In Proceedings of 6th International Semantic
Web Conference / 2nd Asian Semantic Web Conference
(ISWC/ASWC 2007), pages 324–339, 2007.

[Nikolov et al., 2008] Andriy Nikolov, Victoria S. Uren, En-
rico Motta, and Anne N. De Roeck. Handling instance
coreferencing in the KnoFuss architecture. In Paolo Bou-
quet, Harry Halpin, Heiko Stoermer, and Giovanni Tum-
marello, editors, IRSW, volume 422 of CEUR Workshop
Proceedings. CEUR-WS.org, 2008.

[Pan et al., 2007] Zhengxiang Pan, Abir Qasem, Sudhan
Kanitkar, Fabiana Prabhakar, and Jeff Heflin. Hawkeye:
A practical large scale demonstration of semantic web
integration. In In Proc. of the 3rd International Work-
shop on Scalable Semantic Web Knowledge Base Systems
(SSWS’07), 2007.

[Qasem et al., 2008a] Abir Qasem, Dimitre A. Dimitrov, and
Jeff Heflin. Efficient selection and integration of data
sources for answering semantic web queries. In ICSC 08:
Proceedings of the Second IEEE International Conference
on Semantic Computing. IEEE Computer Society Press,
2008.

[Qasem et al., 2008b] Abir Qasem, Dimitre A. Dimitrov, and
Jeff Heflin. Goal node search for semantic web source
selection. In WI 08: Proceedings of the International
Conference on Web Intelligence. IEEE Computer Society
Press, 2008.

[Rahm and Do, 2000] Erhard Rahm and Hong Hai Do. Data
cleaning: Problems and current approaches. IEEE Data
Eng. Bull., 23(4):3–13, 2000.

[Serafini and Tamilin, 2007] Luciano Serafini and Andrei
Tamilin. Instance migration in heterogeneous ontology
environments. In Proceedings of 6th International Seman-
tic Web Conference / 2nd Asian Semantic Web Conference
(ISWC/ASWC 2007), pages 452–465, 2007.

[Tous and Delgado, 2006] Rubén Tous and Jaime Delgado.
A vector space model for semantic similarity calcula-
tion and OWL ontology alignment. In 20th International
Conference on Database and Expert Systems Applications
(DEXA), pages 307–316, 2006.

[Winkler, 2006] William E Winkler. Overview of record
linkage and current research directions. Technical report,
Bureau of the Census, 2006.


