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Abstract

In this work we adapt an efficient information integration
algorithm to identify the minimal set of potentially relevant
Semantic Web data sources for a given query. The vast ma-
jority of these sources are files written in RDF or OWL for-
mat, and must be processed in their entirety. Our adaptation
includes enhancing the algorithm with taxonomic reason-
ing, defining and using a mapping language for the purpose
of aligning heterogeneous Semantic Web ontologies, and in-
troducing a concept of source relevance to reduce the num-
ber of sources that we need to consider for a given query.
After the source selection process, we load the selected
sources into a Semantic Web reasoner to get a sound and
complete answer to the query. We have conducted an ex-
periment using synthetic ontologies and data sources which
demonstrates that our system performs well over a wide
range of queries. A typical response time for a substan-
tial work load of 50 domain ontologies, 80 map ontologies
and 500 data sources is less than 2 seconds. Furthermore,
our system returned correct answers to 200 randomly gen-
erated queries in several workload configurations. We have
also compared our adaptation with a basic implementation
of the original information integration algorithm that does
not do any taxonomic reasoning. In the most complex con-
figuration with 50 domain ontologies, 100 map ontologies
and 1000 data sources our system returns complete answers
to all the queries whereas the basic implementation returns
complete answers to only 28% of the queries.

1 Introduction

The Semantic Web provides an infrastructure that has the
potential to transform the Web to a true global knowledge
medium. Ontologies, expressed in a standard logic lan-
guage with formal semantics, can be used in concert with

web data in order to develop powerful query systems. The
research community and the industry have made significant
progress toward realizing this vision. For example, the Web
Ontology Language (OWL) is now an international stan-
dard [13]. However, the Semantic Web is a decentralized
medium where different parties can and will, in general,
adopt different ontologies. When many ontologies and data
sources are created independently of one another it is quite
possible that many of them will refer to the same or similar
concepts. Therefore, while some of the data sources may
contain data described directly in terms of a given query
ontology, others may not. Furthermore, regardless of the
advances in reasoning techniques and best efforts in clever
coding we will always have to deal with data sets that are
just too big for a given Semantic Web knowledge base sys-
tem. In this work we consider an approach for identifying
the minimal set of potentially relevant Semantic Web data
sources for a given query while making sure that we do not
miss relevant sources that commit to ontologies different
from the one used in the query.

In order to align heterogeneous ontologies, we use the
notion of map ontologies. In our solution, these are like
any other OWL ontology except they consist solely of ax-
ioms that relate concepts from one ontology to concepts of
another ontology. We use the term domain ontologies for
all other ontologies. The choice of OWL to articulate the
alignments make these maps shareable via the Web, where
any one can create alignments and publish them in OWL
for others to use. Such maps may be created manually or
by using state-of-the-art ontology alignment tools. We note
that aligning ontologies is a difficult and relevant problem,
but this is not the focus of this paper.

We hypothesize that a user driven alignment framework
will enable integration to be an emergent property of the
Web. Furthermore, existing OWL tools can be used to pro-
cess these maps. We note that we will not have alignments
between all pairs of ontologies, but it should be possible to



compose an alignment from existing alignments.
Our approach uses a concept that we refer to as “source

relevance” in conjunction with an adapted information in-
tegration algorithm to select the data sources that are suffi-
cient to provide the answers to a given query. Intuitively, a
data source is potentially relevant to a query if it has some
information on some predicate of the query. In our approach
a data source can make assertions about its contents by
means of what we call REL statements. We then use these
selected sources and an OWL reasoner to obtain answers to
distributed queries on the Semantic Web data. Note, that
this selective loading of only relevant data sources will pro-
vide a more optimal solution because in the Semantic Web,
data sources significantly outnumber ontologies. This is re-
flected in Swoogle’s present cache which has 10,000 on-
tologies but an impressive 2.5 million documents [4]. Cur-
rently our implemented system supports a restricted sub-
set of SPARQL queries, simple OWL ontologies and data
sources that commit to them.

Once we have the maps between the ontologies estab-
lished, we need to use them to translate a query in terms
of the data sources that are available. Database researchers
have developed information integration algorithms that ad-
dress similar problems. In our work we adapt one such algo-
rithm by Halevy et al. known as the Peer Data Management
System (PDMS) reformulation algorithm [8]. PDMS uses
both Global-As-View (GAV) and Local-As-View (LAV)
maps, which are the two most well known information inte-
gration formalisms.

Our query language is based on the conjunctive query
language for Description Logic (DL) that has been proposed
by Horrocks et al. [9]. This query language overcomes the
inadequacy of DL languages in forming extensional queries.
Furthermore, it corresponds to the most common SPARQL
queries. Note, however, that our implementation is re-
stricted by the query language supported by KAON2 [12]
which we use as our reasoner. KAON2 can only answer the
so called DL-safe conjunctive queries [6].

Our design choices were influenced by the following ob-
servations about the current state of the Semantic Web.

• Observation 1: The majority of Semantic Web data
is in flat RDF/OWL files as opposed to databases.
Therefore, any system that uses such data must load
the whole source as opposed to issuing queries to the
sources as is done in PDMS. Furthermore, these files
are served via HTTP. We use the term “atomic data
sources” to refer to this type of data sources.

• Observation 2: Many data sources may commit to the
same ontology and a majority of the data commits to
simple ontologies like FOAF, Dublin core, etc. As data
significantly outnumbers ontologies, our focus is on in-
stance retrieval as opposed to queries about the onto-

logical structure. We also focused on reasoning over
simple ontologies given their dominance in the Seman-
tic Web.

• Observation 3: Although, ontologies are relatively
static, the data may change frequently. This means
a centralized knowledgebase approach would be inef-
fective, since the quality of answers depends on the
frequency of crawling and loading data.

This work is an extension of our initial work presented
in Dimitrov et al. [3]. The previous work was based on
a two-tier ontology architecture so it had no support for
map composition. Our enhancements now enable us to sup-
port a multi-tier ontology architecture and we can compose
maps of arbitrary length. Specifically we make the follow-
ing three technical contributions in this paper.

1. We formally define the source selection problem.

2. We present an algorithm that uses OWL maps and REL
statements to identify relevant data sources for a given
query.

3. We demonstrate that by loading the sources selected
by our algorithm into a DL reasoner, we achieve an ef-
ficient and effective solution for answering distributed
queries on the Semantic Web.

The rest of the paper is organized as follows: In Section
2 we formally introduce the source selection problem, in
Section 3, we describe our mapping language that is com-
patible with the mapping formalisms used by the PDMS and
introduce a mechanism for describing source relevance. In
Section 4, we describe the details of the Ontology Based
Information Integrator (OBII), including a source selection
algorithm. In Section 5, we describe some experiments that
we have conducted to evaluate our system. In Section 6,
we compare some related work with our approach and in
Section 7 we conclude and discuss future work.

2 The Source Selection Problem

In this section we formally define the source selection
problem (i.e. how to select the potentially relevant data
sources for a given query) in the context of the Semantic
Web.

The Semantic Web can be viewed as a set of classes (and
individual that belong to them) and properties; axioms that
relate these classes, properties and individuals; and docu-
ments which contain these various Semantic Web entities.
In the discussion that follows we use C to refer to the set
of all classes, P to refer to the set of all properties, D to
refer to the set of all individuals, and U to refer to the set
of document identifiers (URLs in the case of OWL) in the
Semantic Web.



We say an ontology is some subset of C∪P (and possibly
a set of axioms that relate them). Note: According to the of-
ficial OWL description [13] an ontology can also have indi-
viduals in addition to the classes and properties that describe
those individuals. However, for convenience of analysis we
decided to separate ontologies (i.e. the class/property def-
initions and axioms that relate them) and data sources (as-
sertions of class membership or property values). We say
each data source is a set of assertions of the form a:c ∈ C
or 〈a, b〉 : p ∈ P where a and b are names that denote indi-
viduals. Basically, any OWL document that contains a de-
scription of a class or a property is an ontology; otherwise,
the document is a data source. We note that this separation
does not violate any of OWL’s formal semantics.

In order to align heterogeneous ontologies, we introduce
the notion of map ontologies. These are like any other OWL
ontology except they consist solely of axioms that relate
concepts from one ontology to concepts of another ontol-
ogy. We use the term domain ontologies for all other on-
tologies.

We are now ready to define our problem space. We intro-
duce two functions. First, o (hereinafter referred to as ontol-
ogy function) which maps U to a set of ontologies. Second,
s (hereinafter referred to as source function) which maps U
to a set of data sources.

Definition 1 (Semantic Web Space) A Semantic Web
Space SWS is a tuple 〈U , o, s〉.

Definition 2 (Satisfaction) An interpretation I satisfies a
Semantic Web Space 〈U , o, s〉, iff for each u ∈ U , I satisfies
o(u) and s(u).

We define satisfaction of o(u) and s(u) per the official
OWL semantics document [13].

A knowledge base entails (written |=) a set of logical
sentences α iff every interpretation that satisfies the knowl-
edge base also satisfies α. We now define the notion of
entailment of a SWS.

Definition 3 (Semantic Web Space Entailment) Given a
set of description logic sentences α, SWS |= α iff every in-
terpretation that satisfies SWS also satisfies α

Definition 4 (Conjunctive Query Form) A conjunctive
query has the form H

(
X

)
:-B1

(
X1

)
, . . . , Bn

(
Xn

)
where X is a vector of variables and/or individuals and
each Bi is a unary or a binary atom representing a concept
or role term respectively.

Our query language is based on the conjunctive query
language for DLs that has been proposed by Horrocks et al.
[9]. This query language overcomes the inadequacy of de-
scription logic languages in forming extensional queries.

Furthermore, it corresponds to the most common
SPARQL queries. We refer to the left hand side of :- as
the head of the query and the right hand side as the body of
the query. The variables that appear in the head must ap-
pear also in the body and are universally quantified. Such
variables are called distinguished variables and describe the
form of a query’s answers. All other variables in the query
are called non-distinguished variables and are existentially
quantified. For a given query Q and substitution θ, we use
Qθ as a shorthand for B1θ ∧ B2θ . . .∧ Bnθ.

Definition 5 (Answer Set) Given a Semantic Web Space
SWS, an answer set A to a query Q is the set of all sub-
stitutions θ for all distinguished variables in Q such that:
SWS |= Qθ.

All variables in a query should be mapped to individuals
explicitly introduced in the data sources. This definition
follows the definition presented by Motik and Sattler [11].

We now introduce the concept of source relevance in our
framework by means of a “REL” statement. A REL state-
ment allows us to make assertions about the type of infor-
mation that a source contains so that we can ignore sources
that we are certain will not contribute toA for a given query.
In order to give a description of the REL statements we
first define two relations that establish relationship between
classes and properties defined in ontologies, individuals as-
serted in data sources and document identifiers needed to
access these sources.

1. SrcInst: U × S × C → 2D that maps the set of docu-
ment identifiers, the set of source functions S and the
set of classes C to the power set of individuals D. Es-
sentially, SrcInst gives us the set of individuals of a
given class according to a given data source, i.e. for
each u ∈ U , s ∈ S and c ∈ C, the interpretation of
SrcInst(u, s, c) = {(aI) | a : c ∈ s(u)}.

2. SrcInstP: U × S × P → 2D×D that maps the set
of source functions S and the set of properties P to
the power set of individual pairs D ×D. Essentially,
SrcInstP gives us the sets of individual pairs that are
related by a given property according to a given data
source, i.e. for each u ∈ U , s ∈ S and p ∈ P , the inter-
pretation of SrcInstP (u, s, p) = {〈aI , bI〉 | 〈a, b〉 : p ∈
s(u)}.

The REL statement has the following two forms: a)
REL(u, Cj , CE) and b) REL(u, Pj , P′) where Ui is a docu-
ment identifier, Cj is an atomic class, CE is a class expres-
sion, and Pj , P′ are properties.

Definition 6 (Source Conformance) Given a source func-
tion s we say source u conforms to a set of REL statements
R iff



1. for each r ∈ R s.t. r = REL(u, Cj , CE), SrcInst(u, s,
Cj) is 6= ⊥ and SrcInst(u, s, Cj) v CE or r = REL(u,
Pj , P′), SrcInstP(u, s, Pj) is 6= ⊥ and SrcInstP(u, s,
Pj) v P′

2. for all a:Cj ∈ s(u) ∃ r ∈ R s.t. r = REL (u, Cj , CE)
and s(u) |= {a} v CE

3. for all 〈a, b〉:Pj ∈ s(u) ∃ r ∈ R s.t. r = REL (u, Pj , P′)
and s(u) |= 〈a, b〉:P′

Definition 7 (Source Function Conformance) We say a
source function s conforms to a set of REL statements R
if ∀ u ∈ U , s(u) conforms to R

Definition 8 (Potential Relevance) Given a conjunctive
query Q, a set of REL statementsR, a set of document iden-
tifiers U , and an ontology function o, a source u is poten-
tially relevant to Q iff ∃ a source function s that conforms to
R where 〈U, o, s〉 |= Qθ and 〈U, o, s− u〉 6|= Qθ.

Note, s-u denotes a function f(x) as follows:

f(x) =
{

s(x) if x 6= u
� otherwise

Definition 9 (Source Selection Problem) Given a Seman-
tic Web Space SWS, a query Q and a set of REL statements
R, the source selection problem is to identify all potentially
relevant sources.

3 Mapping Language

In this section, we introduce OWL for Information Inte-
gration (OWLII). It is a subset of OWL, the design of which
is influenced by the PDMS algorithm. We use OWLII to
describe maps and data sources in the Semantic Web using
GAV and LAV rules. Since OWL DL is decidable, its subset
OWLII is also decidable.

We follow a process similar to Grosof et al. [5] to define
the subset of DL for OWLII. In the discussion below the
subscript a is used to refer to a DL language whose classes
can be mapped to antecedents of a FOL implication and the
subscript c is used to refer to a DL language whose classes
can be mapped to consequents. Similarly, we use the sub-
script ac to refer to classes that can be mapped to either the
antecedent or the consequent.

Definition 10 Lac is a DL language where A is an atomic
class and i is an individual. If C and D are classes and R is
a property, then C u D, ∃ R.C and ∃ R.{i} are also classes.

Note: ∃ R.{i} allows us to incorporate owl:hasValue in our
language. Otherwise, nominals are not supported.

Definition 11 La includes all classes in Lac. Also, if C and
D are classes then C t D is also a class.

Definition 12 Lc includes all classes in Lac. Also, if C and
D are classes then ∀ R.C is also a class.

Definition 13 We now define a OWLII map ontology as a
set of OWLII axioms of the form C v D, A ≡ B, P v Q, P
≡ Q, P≡ Q−, where C is an La class, D is an Lc class, A, B
are Lac classes and P, Q are properties

We have also defined a translation function T which
takes a DL axiom of the form C v D, where C is an La

class and D is an Lc class, and maps it into the FOL format
for OWLII. This definition expands the one for DHL [5].
Due to limited space, we do not present it here. Please see
our technical report [15] for details.

We end this section by discussing briefly how the REL
statements described in Section 2 are incorporated into
OWLII. REL statements can be translated into LAV rules
using a minor variation of the function T mentioned above.
When translating a statement REL(u, Cj , CE), the right-
hand side of the subclass statement is the intersection of Cj

and CE.
In OWL we express the REL statement by intro-

ducing four new predicates in a new name space
"meta". They are meta:RelStatement, meta:contained,
meta:container and meta:source. For example, the
statement REL(http://sourceURL, CinemaDisplay, ∃
madeBy.“DELL”) can be expressed as follows. The
meta:container will be the class expression that defines
∃madeBy.“DELL”, the meta:contained will be Cine-
maDisplay and meta:source will be http://sourceURL. The
meta:RelStatement will encapsulate these three predicates.
All these statements together say that in a data source
located at http://sourceURL there are some individuals
of class “CinemaDisplay” that are made by Dell. Due to
limited space, we can not present the detailed description of
the REL statements in this paper. Please see our technical
report [15] for details.

4 OBII: A Semantic Web Query Answering
System

In this section we present our adapted algorithm and
briefly discuss the implemented architecture of OBII to give
the reader a flavor of the working system.

Our algorithm is based on the PDMS algorithm, which
takes as input a query, a set of views describing the sources
and the maps. It computes a reformulation strictly in terms
of the sources. As long as there are no cycles in the maps,
the PDMS algorithm computes complete reformulations in
polynomial time [8]. The PDMS imposes certain restric-
tions on the input for it to remain polynomial time. In
our adaption we ensure that our input language conforms
to these restrictions. The algorithm constructs a “rule-goal”



tree: where goal nodes are labeled with atoms of the peer
relations, and rule nodes are labeled with peer maps. Each
AND-OR traversal from root to leaf of the rule-goal tree
represents one way of answering the query. The reformula-
tion then is obtained by the union of all of these traversals.

We now describe our source selection algorithm. Note:
from here on we refer to an ontology that only has classes,
properties, subClassOf and subPropertiesOf axioms as a
simple ontology. For our algorithm we assume that all do-
main ontologies are simple ontologies given their present
dominance in the Semantic Web. Our mapping ontologies
are described in OWLII (see Section 3), and sources are de-
scribed using the REL statements and only contain ABox
assertions that use named classes and properties.

Given a conjunctive query we first split its body into its
constituent atoms. This give us the starting point of our
rule goal tree. Now for each atom in the query we attempt
to expand it using maps and source descriptions that are
available to the system. By recursively continuing with this
expansion until we do not have any more maps (or source
descriptions) available we build a rule goal tree in a simi-
lar fashion as the basic PDMS described above. However,
our expansion is different due to the presence of domain
ontologies with class and property taxonomies. We imple-
ment taxonomic reasoning as follows. For each query goal
we use a reasoner to find the set of subclasses (sub proper-
ties). We then implement a variation of standard unification
process that attempts to unify any of the sub predicates of
a node with a given map. Our extended expansion algo-
rithm is presented as Algorithm 1. Due to limited space
we can not explain the algorithm in detail. Interested read-
ers are referred to our technical report [15]. We however,
note the following for readability: a) the subPred and the
match routine implements the taxonomic reasoning b) the
details of the MINICON routine can be found in Pottinger
and Halevy [14] and c) the MapViews and SourceViews ob-
jects are data structures that store the LAV and GAV maps
and LAV source descriptions respectively. Note, both of
these sets are indexed by their source ontologies for effi-
cient retrieval where the source ontology of a map is the left
hand side (LHS) ontology of a GAV map or the right hand
side (RHS) ontology of a LAV map. After we have built the
rule goal tree we read off all of the unique sources from the
leaves of the rule goal tree.

The basic PDMS does not allow cycles in the maps as
this makes query answering undecidable. Therefore it is
incomplete in the presence of cyclic maps. However, by se-
lecting sources that are then input into an external reasoner,
we have designed an algorithm that is complete even in the
presence of cyclic maps.

Theorem 1 The OBII source selection algorithm is com-
plete in that given a set of simple domain ontologies, OWLII
map ontologies and sources that conform to OWLII REL

Algorithm 1 OBII node expansion.
EXPAND(Node n, MapViews MV, SourceViews SV)

1: sp← SUBPRED(n.pred, n.ont)
2: omaps← {m | (n.ont,m) ∈ MV}
3: for each v ∈ omaps do
4: if v has not been used then
5: if GAV(v) and MATCH(n, sp, HEAD(v)) then
6: for each sub goal ∈ v do
7: create an AND child goal node
8: for each child goal node cgn do
9: EXPAND(cgn, MV, SV)

10: else if LAV(v) and MATCH(n, sp, b) for some b ∈
BODY(v) then

11: create an OR child node cgn for the view using
MINICON

12: EXPAND(cgn, MV, SV)
13: smaps← {m | (n.ont,m) ∈ SV}
14: for each v ∈ smaps do
15: if GAV(v) and MATCH(n, sp, HEAD(v)) then
16: for each sub goal ∈ v do
17: create an AND child goal node
18: else if LAV(v) and MATCH(n, sp, b) for some b ∈

BODY(v) then
19: create an OR child node cgn for the view using

MINICON

statements, it will identify exactly the potentially relevant
sources. Furthermore, this algorithm terminates in polyno-
mial time.

We now provide a sketch proof of the completeness of
our algorithm.

Proof (sketch): Observe that the original PDMS algo-
rithm is incomplete in the presence of cycles solely due to
the check that the same map is not used twice on any path
from root to leaf (of course without this check, the tree could
be infinite). If we omitted the check there would be goal
nodes identical to goal nodes elsewhere in the tree. Any
leaves of subtrees rooted at such goal nodes would be iden-
tical to leaves of the subtree rooted at the duplicated goal
node. Thus they do not identify any new sources. Further-
more, since the PDMS algorithm is polynomial [8] and our
algorithm only adds a test that is linear in the size of an
ontology, our algorithm is polynomial.

Figure 1 shows the architecture of our system. OBII
executes in two asynchronous phases: a conversion phase
and the query phase. The conversion phase, is done by the
OWLIIRuleProcessor and occurs when a new source or a
map ontology becomes available to the system. OWLIIR-
uleProcessor parses the OWLII map ontologies and REL
meta data into OBII’s MapKB as LAV and GAV rules. In
this way the system’s knowledge base always has the nec-
essary information to reformulate a query.
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Figure 1. OBII architecture diagram

The query phase occurs when a query comes in. The
Source Selector then takes the user’s query and mapKB as
input and uses our source selection algorithm to produce a
set of selected sources which may contribute to an answer.
Note, the module will also load some domain ontologies for
use in taxonomic reasoning. The AnsweringEngine loads
the sources selected by the Source Selector, the domain on-
tologies that are used in the node expansion and all the rele-
vant map ontologies into KAON2. Then it issues the origi-
nal query to the reasoner and formats the retrieved answers.
Note: by loading only the used ontologies we provide a sys-
tem that will scale well in terms of reasoning when we have
a potentially large number of ontologies.

5 Evaluation

We implemented a workload generator that allows us
to control several characteristics of our dataset. In gener-
ating the synthetic domain ontologies we decided to have
on the average 20 classes and 20 properties (influenced by
the dominance of small ontologies in the current Semantic
Web). The class and property taxonomy have an average
branching factor of 4 and an average depth of 3. In generat-
ing the OWLII map ontologies we chose to have an even
distribution of various OWLII axioms and chose to map
about 30% of the classes and 30% of the properties of a
given domain ontology. The resulting GAV and LAV maps
contain an average of 5 predicates with some maps contain-
ing up to 11 predicates. The average data source has 75
triples and uses 30% of the classes and 30% of the proper-
ties of the domain ontology that it commits to. We generate
200 random conjunctive queries with 1 to 3 predicates (75%
are properties as opposed to a class).

In choosing the configurations for our experiments we
decided to vary two parameters: the number of data sources
that commits to an ontology and the maximum number of
maps required to translate from any source ontology to any
target ontology. Since this is equivalent to what Halevy

et al. [8] refer to as the diameter, we adopt their term in
our discussion. We conducted two sets of experiments to
evaluate the systems. In the first experiment (herein after
referred to as experiment 1) we have varied the diameter.
In the second experiment (herein after referred to as exper-
iment 2) we have varied the number of data sources that
commits to a given ontology. In both experiments we kept
the number of ontologies to 50. We denote an experiment
configuration as follows: (nO-nD-nS) where nO is number
of ontologies, nD is the diameter and nS is the number of
sources that commit to an ontology.

In our experiments the two main metrics we collected
and examined are response time and the percentage of com-
plete responses to queries. The response time is the time it
takes from the issue of a query to the delivery of its result.
We compared three systems in our experiments: A base-
line system that loads all the ontologies and data sources
and reasons over the complete knowledge base, a system
that uses the original PDMS algorithm for source selection
and our OBII system. We should note here that because
the baseline system has a very different architecture, its re-
sponse time is calculated differently. For the baseline sys-
tem we add the load time (i.e. the time to load semantic web
space) and the reasoning time to get the answers. The load
time is added because as we are considering a dynamic en-
vironment, we should always work on fresh data, therefore
each query results in a new knowledge base. For the other
two systems, load time is calculated as the time to load the
domain ontologies, the map ontologies that have been used
in the source selection and the selected data sources. The
response time for these two systems then is a sum of load
time, source selection time and the reasoning time.

In determining the completeness of queries, we consider
the baseline system’s answers to be the reference set. This
metric is the percentage of queries where a system returns
the same answer as baseline, considering only queries that
entail at least one answer. Note: KAON2 is only sound
and complete for DL-safe conjunctive queries, therefore the
baseline system may not be complete for some queries.

The first observation from our experiments is that OBII is
complete with respect to KAON2, where as the basic PDMS
drops in completeness as we add data sources or increase
the diameter. This is evident from Figure 2(a) which shows
the completeness over the set of queries for experiment 1.
The second observation is that this completeness comes at
a price. In Figures 2(b) and 3(a), where we show the aver-
age response time for each system, it is clear that OBII is
approximately twice as slow as the basic PDMS. However,
OBII is 10 times faster than the baseline system, which pro-
vides identical functionality. Note: the graph in Figure 3(a)
uses a logarithmic scale.

This time penalty versus the PDMS is essentially un-
avoidable. In order to get complete answers OBII loads



(a) Completeness of OBII and PDMS compared to baseline as we
increase the diameter

(b) Scalability w.r.t. the increase of diameter

Figure 2. Experiment 1: Varying Diameter.

more sources than PDMS. Recall this is because we in-
corporate taxonomic reasoning in our algorithm which the
original PDMS does not. The cost of loading these sources
generally dominates its response time. This is evident from
Figure 3(b). However, for large diameter this dominance is
reduced as OBII works with deeper rule goal trees. Even
so, in the experiment that had the largest diameter (20), the
response time for OBII is about 6.5 seconds (as opposed
to PDMS’s 3.5 seconds). Furthermore, PDMS is only 28%
complete for this experiment.

6 Related Work

Serafini and Tamilin have developed the DRAGO system
that reasons with multiple semantically related ontologies
by using semantic mappings to combine the inferences of
local reasoning of each ontology. Although their original
work focused only on TBoxes they have recently extended
this work to accommodate ABoxes to perform instance re-
trieval queries [16]. Their work is different from ours in
that they consider the map processing (translating query to
source) as part of the reasoning process. Therefore they
have to work on a much larger knowledge base as they have

(a) Scalability w.r.t. the increase of sources

(b) Query to Load time ratio for PDMS and OBII as we
increase the sources

Figure 3. Experiment 2: Varying Number of
Sources

to consider all the maps available to the system. The Piazza
system [7] that uses the PDMS algorithm focuses more on
integrating XML documents. The treatment of OWL is lim-
ited in this work and is described as a fairly difficult prob-
lem.

Haase and Motik [6] have described a mapping system
for OWL and proposed a query answering algorithm. They
identify a mapping language that is similar to ours. How-
ever, as their language adds rules to OWL, it is undecidable
and as such they need to introduce restrictions to achieve
decidability. Our language, on the other hand, is a sub
language of a decidable language. Furthermore, similar to
the DRAGO approach, Haase and Motik do not rely on an
explicit reformulation step and process all the maps for a
query reformulation.

Peer-to-peer systems like Bibster [2] and SomeWhere
[1] have shown promises in providing query answering so-
lutions for the Semantic Web. However, a peer-to-peer sys-
tem needs special software installed at every server. Our
system on the other hand makes use of the existing infras-
tructure of the Web.

A recent work by Liarou et al. [10] uses Distributed
Hash Tables (DHT) to index and locate relevant RDF data
sources. However, they do not address the schema mapping
issue and therefore work on a single ontology environment.
Furthermore, DHTs are targeted for a more P2P architecture



as opposed to a client server web architecture.

7 Conclusion and Future Work

In this paper we have introduced a source selection prob-
lem for the Semantic Web. We have defined OWLII, a
subset of OWL that is compatible with the GAV and LAV
formalisms and which is more expressive than DHL. We
have adapted a query reformulation algorithm to solve our
source selection problem. As our experiments demonstrate
our system is about 10 times faster than a naive approach
of reasoning with all sources, and only about twice as slow
as the incomplete information integration algorithm that it
is based on. Our system returned correct answers with re-
spect to KAON2 to 200 randomly generated queries in three
different data configurations.

This work opens up some interesting avenues for fur-
ther research. First, we have assumed that the domain on-
tologies only have simple taxonomic axioms. We have not
considered the more advanced axioms that are available in
OWL. One way to address this is to view the axioms as self-
referential maps. Second, we want to investigate ways that
will determine the best path to a translation. This may not
always be the shortest path. Sometimes due to a translation
that loses information, we may choose to follow a path that
results in the least loss of information as opposed to the least
number of translations. Third, we intend to explore methods
of automatically generating high quality REL statements.
Finally, we have observed that our rule-goal trees get very
big as we increase the diameter of the system. We intend to
explore optimizations that remove redundancy from these
trees.
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