
DLDB2: A Scalable Multi-Perspective Semantic Web Repository

Zhengxiang Pan, Xingjian Zhang, Jeff Heflin
Department of Computer Science and Engineering, Lehigh University

19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.
{zhp2, xiz307, heflin}@cse.lehigh.edu

Abstract

A true Semantic Web repository must scale both in terms
of number of ontologies and quantity of data. It should
also support reasoning using different points of view about
the meanings and relationships of concepts and roles. Our
DLDB2 system has these features. Our system is sound
and complete on a sizable subset of Description Horn Logic
when answering extensional conjunctive queries, but more
importantly also computes many entailments from OWL DL.
By delegating TBox reasoning to a DL reasoner, we fo-
cus on the design of the table schema, database views,
and algorithms that achieve essential ABox reasoning over
an RDBMS. We evaluate the system using synthetic bench-
marks as well as real-world data and queries.

1 Introduction

The evolving Semantic Web extends the existing Web
with structure for data and a mechanism to specify formal,
logic based and shareable semantics. It does so via the use
of ontologies, which are expressed in the Web Ontology
Language OWL. The formal semantics of Semantic Web
data can be used to make inferences (logical deduction)
and develop powerful query systems. The Semantic Web
is growing and clearly scalability is an important require-
ment for Semantic Web systems. Furthermore, the Seman-
tic Web is an open and decentralized system where different
parties can and will, in general, adopt different ontologies.
Thus, merely using ontologies, does not reduce heterogene-
ity: it just raises heterogeneity problems to a different level.
Without some form of alignment, the data that is described
in terms of one ontology will be inaccessible to users that
ask questions in terms of another ontology. Our theory of
perspective provides a framework to integrate data sources
using different ontologies. Based upon this framework, we
built DLDB2, a scalable Semantic Web knowledge system
that allows queries from different points of view.

In what follows, we first introduce ontology perspec-

tives. We present the system’s architecture, design and im-
plementation with a focus on how the reasoning is achieved
and perspectives are supported. We then evaluate the sys-
tem using benchmarks as well as real-world multi-ontology
data sets and queries.

2 Ontology Perspectives

In prior work, we have defined ontology perspectives
which allows the same set of data sources to be viewed from
different contexts, using different assumptions and back-
ground information [4]. That work also presents a model
theoretic description of perspectives. In this section, we set
aside the versioning issues of that paper and introduce some
essential definitions.

Each perspective is based on an ontology, hereafter
called the basis ontology or base of the perspective. By
providing a set of terms and a standard set of axioms, an
ontology provides a shared context. Thus, data sources that
commit to the same ontology have implicitly agreed to share
a context. When it makes sense, we also want to maximize
integration by including data sources that commit to differ-
ent ontologies.

We now provide informal definitions to describe our
model of the Semantic Web. A Semantic Web space W
is a pair 〈O,S〉, where O is a set of ontologies and S is
a set of data sources. An ontology O in O is a four-tuple
〈C,R, T , E〉, where C is a set of concepts; R is a set of
roles; T is a TBox that consists of a set of axioms; E ⊂ O
is the set of ontologies that are extended by O.

An ontology defines a set of concepts and a set of roles,
the union of which is referred to as its vocabulary. It also
contains a set of axioms, which is called the TBox (a stan-
dard term in description logics, short for terminological
box). An ontology can extend another, which means that
it adds new vocabulary and or axioms. Extension is some-
times referred to as inclusion or importing.

An ancestor of an ontology is an ontology extended ei-
ther directly or indirectly by it. If O2 is an ancestor of O1,
we write O2 ∈ anc(O1). Note the ancestor function re-

1

turns the extension closure of an ontology, which does not
include the ontology itself.

For ontology extension to have its intuitive meaning, all
models of an ontology should also be models of every on-
tology extended by it. Here we assume that the models of T
are as typically defined for OWL, for example see [5]. We
now define the semantics of a data source.

Definition 1 A data source s in S is a pair 〈A, O〉, where
A is a ABox that consists of a set of formulas and O ∈ O is
the ontology that s commits to.

When a data source commits to an ontology, it has agreed
to the terminology and definitions of the ontology. It means
that for data source s = 〈As, Os〉, all the concepts and roles
that are referenced inAs should be either from the ontology
Os or anc(Os). Thus every interpretation that is a model of
data source must also be a model of the ontology for that
data source.

We now define an ontology perspective model of a Se-
mantic Web space. This definition presumes that each on-
tology can be used to provide a different viewpoint of the
Semantic Web.

Definition 2 (Ontology Perspective Model) An interpre-
tation I is an ontology perspective model of a semantic web
spaceW = 〈O,S〉 based on O ∈ O (written I|=OW) iff:
1) I is a model of O and 2) for each s = 〈As, Os〉 ∈ S such
that Os = O or Os = anc(O), I is a model of s.

Based on this definition, entailment is defined in the
usual way, whereW|=Oφ is read as “W O-entails φ”.

Theoretically, each O-entailment relation (perspective)
represents a set of beliefs about the state of the world, and
could be considered a knowledge base. Thus, the answer to
a semantic web query must be relative to a specific perspec-
tive. We now define a Semantic Web query.

Definition 3 Given a Semantic Web Space 〈O,S〉, a Se-
mantic Web query is a pair 〈O, ρ〉 where O ∈ O is the base
ontology of the perspective and ρ is a conjunction of query
terms q1,....., qn. Each query term qi is of the form x:c or
〈x, y〉:r, where c is an atomic concept and r is an atomic
role from O or ancestor of O and x, y are either individual
names or existentially quantified variables.

An answer to the query 〈O, ρ〉 is θ iff for each qi,
W|=Oθqi where θ is a substitution for the variables in ρ.

Given the model described above, we can define a spe-
cial class of ontologies called mapping ontologies. A map-
ping ontology between a sequence of ontologies Oi, ...
,Onintroduces no vocabulary of its own but extends Oi , ...
, On and contains the axioms that map their vocabularies.

We argue that our perspectives have at least two advan-
tages over traditional knowledge representation languages.

First, the occurrence of inconsistency is reduced compared
to using a global view, since only a relevant subset of the Se-
mantic Web is involved in processing a query. Even if two
ontologies have conflicting axioms, inconsistency would
not necessarily happen in most perspectives other than the
ones that are based on the common descendants of the con-
flicting ontologies. Second, the integration of information
resources is flexible, i.e. two data sources can be included in
the same perspective as long as the ontologies they commit
to are both being extended by a third ontology.

3 DLDB2 System

3.1 Architecture

DLDB2 extends DLDB with additional reasoning capa-
bilities and support for perspectives as defined in section 2.
DLDB2 is a knowledge base system that combines a rela-
tional database management system with additional capa-
bilities for partial OWL reasoning. It is freely available as
an open source project under the HAWK framework 1.

The DLDB2 core consists of a Load API and a Query
API implemented in Java. Any DL Implementation Group
(DIG) compliant DL reasoner and any SQL compliant
RDBMS with a JDBC driver can be plugged into DLDB2.
This flexible architecture maximizes its customizability and
allows reasoners and RDBMSs to run as services or even
clustered on multiple machines.

It is known that the complexity of complete OWL DL
reasoning is NEXPTime-complete. Our pragmatic ap-
proach is to trade some completeness for performance. The
overall strategy of DLDB2 is to find the ideal balance of
precomputation of inference and run-time query execution
via standard database operations. Whenever DLDB2 loads
a Semantic Web document, it separates TBox from instance
data. TBoxes are first processed by the DL reasoner in order
to compute implicit subsumptions and the results are used
to create tables and views in the database. Instance data are
directly loaded into the database tables. The consideration
behind this approach is that DL reasoners are optimized for
reasoning over ontologies, as opposed to instance data.

3.2 Loading Ontologies and Data

When DLDB2 loads an ontology, it uses Algorithm 1 to
process the TBox. Note if there are instance data in the on-
tology, they are processed in the same way as if they come
from a data source which commits to this ontology.

First the system creates tables in the database for atomic
classes and roles. There are straightforward correspon-
dences between database relations and datalog relations,

1http://swat.cse.lehigh.edu/downloads/hawk.html

2

the tables are extensional relations and the database views
are intensional relations. For convenience, we use datalog-
style rules to describe the handling of axioms. However,
it is important to note that only acyclic datalog programs
(those with non-recursive rules) can be directly translated
to database view definitions.

Intuitively, predicates represent classes should be unary
and predicates represent roles (in DL) should be binary. In
our design, they both have two additional arguments. We
use Btable(x, s, o) and Ptable(x, y, s, o) to represent class B
and role P respectively. Argument s is the source document
in which a fact is stated. Argument o is the ontology to
which the source document commits. Their purpose is to
support perspectives described in section 2.

The system also creates database views for classes and
properties in order to capture the instances through sub-
sumptions. It does so not only for vocabularies defined in
the current ontology, but also for the vocabularies in its an-
cestors. To differentiate multiple views of the same class
(role) introduced by different ontologies, the name of a view
has to include the identification of the ontology who owns
it. In other words, the argument o is no longer for the pred-
icates representing views. Instead, the names of such predi-
cates have already taken the ontology into account. We use
Bo

view(x, s) and P o
view(x, y, s) to represent the view of class

B and the view of role P from the perspective of ontology
o respectively. This design enables DLDB2 to support per-
spectives and allows different perspectives to have different
sets of axioms.

Next the system encodes and transfers the ontology and
its ancestors to a DL reasoner through the DIG interface.
The DL reasoner performs a satisfiability check and com-
putes subsumptions. Then the system asks the DL reasoner
to return the parents of each atomic class (role) and the
equivalents of each class (role).

Note complex class expressions are not included in the
results we get from DL reasoner through DIG. This is why
we take two steps to combine the original TBox with the in-
ferred axioms from the reasoner. First, we apply the Lloyd-
Topor transformation to rewrite rules with conjunctions in
the head and disjunctions in the body as described in [2].
Second, we merge Tinf and T into T ′ and eliminate redun-
dant rules.

Then subsumption axioms in T ′ are translated into data-
log rules if they fall into horn logic. Atomic classes or roles
in these axioms are directly translated into datalog relations.
Those complex class or role expressions are translated into
a conjunction of datalog atoms by recursively calling the
translation function defined in Table 1, where B denotes an
atomic class, C, C1 and C2 denote classes, P denotes an
atomic role and R denotes a role expression. Each equiva-
lence axiom is translated into two datalog rules in a standard
way: to prevent cycles, extensional relations instead of in-

Translation input Translate to
Trans(B, O, x, s) Bo

view(x, s)
Trans(C1 u C2, O, x, s) Trans(C1,O, x, s1), Trans(C2,O, x, s2)
Trans(∃R.C, O, x, s) Trans(R, O, x, y, s1), Trans(C, O, y, s2) 2

Trans(P , O, x, y, s) P o
view(x, y, s)

Trans(R−, O, x, y, s) Trans(R, O, y, x, s)

Table 1. Translation Function

tensional relations are used in the body.
Currently DLDB2 does not support universal restric-

tions, thus axioms that contain such construct are ignored
as well as other axioms which are out of the scope of De-
scription Horn Logic (DHL) as defined in [2]. Finally, all
the datalog rules resulting from this algorithm are translated
into database view definitions. Relations have already been
mapped to tables and views. Conjunctions in the rule bodies
correspond to joins in SQL. Multiple rules having the same
head are combined using “UNION” in SQL.

It is worth noting that although the datalog rules imple-
mented in the DLDB2’s relational database system corre-
spond to a subset of DHL, DLDB2 does support reasoning
on DL ontologies richer than DHL. For example, the axioms
A v B t C and A v ¬B are both beyond the expressive-
ness of DHL. However, in line 6 of Algorithm 1, the DL
reasoner will compute and return A v C assuming A and
C are both atomic classes.

In general, data loading in DLDB2 is straight-forward.
Each rdf:type triple inserts a row into a class table, while
each triple of other predicates inserts a row into a role table
corresponding to the predicate. If a data document imports
multiple ontologies, the ’o’ argument is decided by the on-
tology that introduces the term that the table corresponds
to. However, DLDB2 materializes certain inferences at data
load time, as discussed in the next section.

3.3 Special ABox Reasoning

This subsection focuses on precomputations that sim-
plify reasoning at query time. These ABox reasoning rou-
tines along with the TBox reasoning provided by the the DL
reasoner make the system complete on a significant subset
of OWL DL.

OWL does not make the unique names assumption,
which means that different names do not necessarily imply
different objects. Given that many individuals contribute to
the Web, it is highly likely that different IDs will be used
to refer to the same object. Such IDs are said to be equal.
A Semantic Web knowledge base system thus needs an in-
ference mechanism that actually treats them as one object.

2y should be a brand new variable everytime the translation function is
called.

3

Algorithm 1 Process TBox of an ontology
LOADONTOLOGY(O = 〈C,R, T , E〉)

1: for each atomic class B in C or Ci where Oi =
〈Ci,Ri, Ti, Ei〉 ∈ anc(O) do

2: Bo
view(x, s) : −Btable(x, s, o), o ∈ anc(O)

3: for each atomic class P in R or Ri where Oi =
〈Ci,Ri, Ti, Ei〉 ∈ anc(O) do

4: P o
view(x, y, s) : −Ptable(x, y, s, o), o ∈ anc(O)

5: Tell the TBox of O and its ancestors to a DL reasoner
6: For each atomic class (role), ask the DL reasoner for its

parents and equivalents, add resulting axioms to Tinf

7: Apply Llyod-Topor transformation to axioms in T
8: T ′ = Tinf ∪ T
9: for each axiom of the form C v D ∈ T ′ such that D is

atomic class that doesn’t participate in a cycle of rules
do

10: Do
view(x, s) : −Trans(C,O, x, s)

11: for each axiom of the form R v P ∈ T ′ such that P
is atomic role that doesn’t participate in a cycle of rules
do

12: P o
view(x, y, s) : −Trans(R,O, x, y, s)

13: for each pair of atomic classes C and D such that C ≡
D ∈ T ′ do

14: Do
view(x, s) : −Ctable(x, s, o), o ∈ anc(O)

15: Co
view(x, s) : −Dtable(x, s, o), o ∈ anc(O)

16: for each pair of atomic roles P and R such that P ≡
R ∈ T ′ do

17: P o
view(x, y, s) : −Rtable(x, y, s, o), o ∈ anc(O)

18: Ro
view(x, y, s) : −Ptable(x, y, s, o), o ∈ anc(O)

Usually, equality is encoded in OWL as (a owl:sameAs b),
where a and b are URIs.

In DLDB2, each unique URI is assigned a unique inte-
ger id in order to save storage space and improve the query
performance (via faster joins on integers than strings). Our
approach to equality is to designate one id as the canoni-
cal id and globally substitute the other id with this canon-
ical id in the knowledge base. The advantage of this ap-
proach is that there is effectively only one system identi-
fier for the (known) individual, nevertheless that identifier
could be translated into multiple URIs. Since reasoning in
DLDB2 is based on these identifiers instead of URIs, the
existing inference and query algorithms do not need to be
changed to support equalities.

However, in many cases, the equality information is
found much later than the data that it “merges”. Thus, each
URI is likely to have been already used in multiple asser-
tions. Finding those assertions is especially difficult given
the table design of DLDB2, where assertions are scattered
into a number of tables. It is extremely expensive to scan all
the tables in the knowledge base to find all the rows that use
a particular id, especially if you consider that the number of

tables is equal to the number of classes plus the number of
properties. For this reason, We use auxiliary tables to keep
track of the tables that each id appears in.

Often times, the knowledge on equality is not given
explicitly. Equality could result from inferences across
documents: owl:FunctionalProperty , owl:maxCardinality
and owl:InverseFunctionalProperty can all be used to in-
fer equalities. DLDB2 is able to discover equality on in-
dividuals using a simple approach. If two URIs have the
same value for an owl:InverseFunctionalProperty, they are
regarded as representing the same individual. A naive ap-
proach is to test for this event every time a value is in-
serted into an inverse functional property table. However,
this requires a large number of queries and potentially a
large number of update operations. In order to improve
the throughput of loading, we developed a more sophisti-
cated approach which queries the inverse functional prop-
erty table periodically during the load. This happens after a
certain number of triples have been loaded into the system.
The specific interval is specified by users based upon their
application requirements and hardware configurations (we
used 1.5 million in our experiment). This approach not only
reduces the number of database operations, but also speeds
up the executions by bundling a number of database opera-
tions as a stored procedure. DLDB2 also supports the same
approach on owl:FunctionalProperty.

One of the ABox reasoning tasks is to infer implicit prop-
erty assertions through the transitive property. This task can
be regarded as computing a transitive closure over a directed
acyclic graph. Transitive closure is typically a problematic
operation for an RDBMS. Nevertheless a number of algo-
rithms have been proposed and some systems even support
a built-in operation. In our system, we must also address
how these algorithms interact with other reasoning. For ex-
ample, the property isIn is transitive, whereas its two sub-
properties: isInState and isInRegion, are not (and should not
be) transitive.

Our solution is to periodically run an algorithm that joins
the view (not the table) on the transitive property iteratively
until a fixed point is reached. This algorithm also takes care
of the perspectives, which allows different ontologies to in-
dependently describe a property as transitive or not.

3.4 Query Answering

The query API of DLDB2 receives queries from users,
executes query operations and returns query results to them.
This API currently supports SPARQL encodings of con-
junctive queries as defined in section 2. During execution,
predicates and variables in the query are substituted by table
names and field names through translation. Depending on
the perspective being selected, the table names are further
substituted by corresponding database view names. Finally,

4

a standard SQL query sentence is formed and sent to the
database via JDBC. Then the RDBMS processes the SQL
query and returns appropriate results.

Since we build the class and property hierarchy when
loading the ontology, there is no need to call the DL rea-
soner at query time. The results returned by the RDBMS
can be directly served as the answer to the original query.
We think this approach makes the query answering system
much more efficient than conducting DL reasoning at query
time. To improve the query performance. DLDB2 system
independently maintains indexes without the intervention
from database administrators.

4 Related Work

The C-OWL work [1] proposed that ontologies could be
contextualized to represent local models from a view of a
local domain. The authors suggested that each ontology is
an independent local model. If some other ontologies’ vo-
cabularies need to be shared, some bridge rules should be
appended to the ontology which extends those vocabularies.
Compared to C-OWL, our perspective approach also pro-
vides multiple models from different views without modi-
fying the current Semantic Web languages.

In the past few years there has been a growing interest in
the development of systems that will store and process large
amount of Semantic Web data. The general design goal of
these systems is often similar to ours, in the sense that they
use some database systems to gain scalability while sup-
porting as much inference as possible by processing and
storing entailments. However, most of these systems em-
phasize RDF and RDF(S) data at the expense of OWL rea-
soning. Some systems resemble the capabilities of DLDB2,
such as KAON2 [6], which uses a novel algorithm to re-
duce OWL DL into disjunctive datalog programs. OWLIM
[7] uses a rule engine to support a limited OWL-Lite reason-
ing. Minerva [10] uses DL reasoner to do TBox reasoning
and a rule engine to do ABox reasoning. It is designed to
be sound and complete on DHL (a subset of OWL-DL) on-
tologies [10]. Unlike DLDB2, both OWLIM and Minerva
chose a “vertical” table design, in which all data is stored
in a single “triple table”. To the best of our knowledge,
none of the systems above support queries from different
perspectives, though BigOWLIM [9] has been reported to
support 1 billion triples of artificially generated data with
high performance hardware.

5 Evaluation

5.1 Performance on Benchmarks

We evaluated DLDB2 using LUBM [3] and UOBM [8].
UOBM extends LUBM with additional reasoning require-

Figure 1. Load time on Benchmarks

ments and links between data. The evaluation is done on a
desktop with P4 2.9G CPU and 1G memory running Win-
dows XP professional. DLDB2 is configured to use Racer
Pro 1.9 as DL reasoner and MySQL 5.0 community version.
For comparison, we also tested Minerva (version 1.1.2) on
the same machine. IBM DB2 Express-C was used as Min-
erva’s backend database.

The main diagram of Figure 1 shows the load times
on LUBM. The datasets were LUBM(x,0) for x ∈
{10, 50, 100, 200, 400, 600, 800, 1000}. It shows that
DLDB2 exhibits linear behavior in the 0 to 130 million
triples range. In comparison, Minerva could only finish
LUBM(50,0) within the same time period.

The smaller diagram on Figure 1 shows the load time
of DLDB2 and Minerva on UOBM. Note UOBM only pro-
vides datasets in three sizes and has no publicly available
data generator. The largest dataset, Lite-10 has 2.2 million
triples. DLDB2 is faster on loading than Minerva, which
materializes all inferred facts at load time.

Figure 2 shows the query response time of DLDB2 and
Minerva on UOBM. DLDB2 is faster than Minerva on 6
queries: query 1,2,5,7,9, and 11. Most of the queries can be
finished under 20 seconds. We noticed the query response
time of query 3 and query 6 are increasing drastically as the
size of the knowledge base increases. They both involve
joining two views with a large number of records. We sus-
pect this is due to the performance of underlying RDBMS,
as it is known that MySQL has serious performance issues
on joining views. Query 10 is also very slow on larger
datasets as it requires a large view to join with itself.

DLDB2 is complete on all the queries in LUBM. As
shown in Table 2, DLDB2 is complete on 10 out of the
13 queries in UOBM lite. Two of the queries (query 2
and 9) are not complete due to universal restrictions and
one of them (query 13) is due to cardinalities. In terms of
completeness on ABox reasoning, DLDB2 is close to DHL

5

Figure 2. Query Response Time on UOBM

Q1 Q2 Q3-8 Q9 Q10-12 Q13
DLDB2 100% 95% 100% 0% 100% 80%
Minerva 100% 100% 100% 100% 100% 61%

Table 2. Completeness on Lite-5

since it implements all the datalog rules except universal
restrictions. On the other hand, DLDB2 supports reasoning
on individual equalities. In addition, DLDB2 uses a DL rea-
soner to compute TBox entailments. Thus DLDB2 supports
some subset of description logics that is beyond DHL. This
is exemplified by query 13 of UOBM, where TBox reason-
ing makes DLDB2 more complete than Minerva.

Note DLDB2 supports queries across multiple ontolo-
gies, but currently no standard benchmark evaluates this ca-
pability. Next we examine the performance of DLDB2 us-
ing real-world data that commits to multiple ontologies. We
also evaluates the use of mapping ontologies and perspec-
tives.

5.2 Multi-ontology Evaluation

In order to evaluate our system in a more realistic set-
ting, we loaded 24 million triples that commit to 9 different

Data Description # of Triples
Geographic Data data of states and regions in US 578
Citeseer online publications 7,430,380
DBLP peer-reviewed publications 16,073,209
Census Data populations by states 314
NSF Awards 50 recent award of each state 460,246
University US universities from wikipedia 16,767
107th Congress members of 107th Congress 2,628
Bill Data politician bills of 107th

Congress
75,711

AIGP AI researchers with their degree
info and advisors

32,716

Total 24,092,549

Table 3. Data sources

Figure 3. Cumulative Load Time

ontologies. This data set was extracted from various In-
ternet resources on academic research or e-government do-
main and was converted to OWL. Table 3 summarizes the
data sources in the sequence we loaded the data. This eval-
uation is done on a SUN workstation with dual 2G CPU and
10G memory. The settings of database and DL reaoner are
the same as the last section. Figure 3 shows the cumulative
load time 3. Note the steep slope between 15.3 and 16.4
million triples corresponds to loading of some files from
DBLP data. The exact reason for this steepness is yet un-
known, but the slope of the curve above that area indicates
that it is not the beginning of exponential behavior.

Based on our notion of query in Definition 3, DLDB2
allows users to choose the perspective associated with each
query, i.e. the mappings they approve. In our evaluation, we
first create the mappings between pairs of related ontolo-
gies, and then map them to popular ontologies like FOAF
and Dublin Core. Totally, we created 16 mappings with 46
axioms. We also created 4 common perspectives such as
“academic” and “e-government”; each perspective extends
(imports) some mappings of interest. Additionally, we cre-
ated 169,023 owl:sameAs statements to map URIs from dif-
ferent sources but refer to the same individual. Given these
mappings, we could now ask more interesting queries. The
following are some examples.
Query 1. Politician bill by subject and population.
Someone may be curious about the topics of bills sponsored
by congressmen and the size of their states. For example,
consider a query to find politician bills related to “energy”
that are sponsored by a politician from a state with popula-
tion less than 700,000. We use the “e-government” perspec-
tive to issue the query and find results like James Jeffords
from Vermont sponsored a bill “Renewable Energy and En-
ergy Efficiency”.
Query 2. Academic influence of a researcher.
One way to get a sense of the academic influence of a re-

3The total number of triples in Figure 3 is larger than that in Table 3
because of the ontology, mapping and owl:sameAs statements.

6

Response time (sec) # of results
Query 1 0.512 6
Query 2 0.622 180
Query 3 20.808 1140

Table 4. Results of Queries

searcher is to look at the journals their academic descen-
dants publish in. A sample query is to find the journals in
which papers are published by the people who are influ-
enced by Eugene Charniak. We use the “academic” per-
spective to issue the query. The query results show aca-
demic descendants such as James Hendler and Kutluhan
Erol, and include journals such as Computational Linguis-
tics, Cognitive Science, Neural Networks, Parallel Comput-
ing and the Journal of Web Semantics.
Query 3. Correlation between Congressional interests and
university funding.
Someone wants to see if states that have congressmen with
specific interests in technology tend to get funding for their
large universities. This query is to find universities (with
more than 10,000 undergraduate students) that have re-
ceived NSF awards, which are located in the state of con-
gressmen who sponsored bills on “technology”. We use
the “all” perspective that includes all mappings across aca-
demic and e-government to issue the query.

The results of the above queries are summarized in Ta-
ble 4. Note the mappings that integrate different sources are
critical to answer these queries. At load time, DLDB2 cre-
ates views based on the map ontologies and perspectives.
At query time, the appropriate views are queried to provide
answers from the chosen perspective. As we can see that
the third query is much slower than the first two, which are
under 1 second. The reason is that the first two are about a
specific person or a small set of states, while the third one
is not particularly selective and involves joins on larger data
sets.

6 Conclusion and Future Work

In this paper we present our DLDB2 system, which takes
advantage of the scalability of relational databases and the
inference capability of description logic reasoners. Our
evaluation shows that DLDB2 scales well when loading up
to 130 million triples. It also finishes most queries under
20 seconds on smaller data sets. Based on ontology per-
spectives which use existing language constructs, DLDB2
can support queries from different view points. Real-world
data using multiple ontologies and realistic queries show
that DLDB2 has achieved this capability without any sig-
nificant performance degradation.

Although we believe our work is a first step in the right

direction, we have discovered many issues that remain un-
solved. First, to ensure the freshness of data, we plan to
support efficient updates on documents. Second, we will
investigate query optimization techniques that can improve
the query response time. Third, we will formally define the
language that our system is complete on and theoretically
prove the system’s completeness.

7 Acknowledgment

This material is based upon work supported by the Na-
tional Science Foundation (NSF) under Grant No. IIS-
0346963. The authors would like to thank developers of
Racer Pro for their software license. Graduate students Abir
Qasem, Ameet Chitnis and Fabiana Prabhakar also con-
tributed to the system described here.

References

[1] P. Bouquet, F. Giunchiglia, F. van Harmelen, L. Serafini, and
H. Stuckenschmidt. C-OWL: Contextualizing ontologies. In
Proc. of the 2003 Int’l Semantic Web Conf. (ISWC 2003),
LNCS 2870, pages 164–179. Springer, 2003.

[2] B. Grosof, I. Horrocks, R. Volz, and S. Decker. Description
logic programs: Combining logic programs with description
logic. In Proceedings of WWW2003, Budapest, Hungary,
May 2003. World Wide Web Consortium.

[3] Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for
owl knowledge base systems. Journal of Web Semantics,
3(2):158–182, 2005.

[4] J. Heflin and Z. Pan. A model theoretic semantics for ontol-
ogy versioning. In Proc. of the 3rd International Semantic
Web Conference, pages 62–76, 2004.

[5] I. Horrocks and P. F. Patel-Schneider. Reducing OWL entail-
ment to description logics satisfiability. In Proceedings of
the Second International Semantic Web Conference, pages
17–29, 2003.

[6] U. Hustadt, B. Motik, and U. Sattler. Reducing SHIQ de-
scription logic to disjunctive datalog programs. In Proc. of
the 9th International Conference on Knowledge Representa-
tion and Reasoning, pages 152–162, 2004.

[7] A. Kiryakov. OWLIM: balancing between scalable repos-
itory and light-weight reasoner. In Developer’s Track of
WWW2006, 2006.

[8] L. Ma, Y. Yang, Z. Qiu, G. Xie, Y. Pan, and S. Liu. Towards a
complete OWL ontology benchmark. In ESWC, pages 125–
139, 2006.

[9] D. Ognyanoff, A. Kiryakov, R. Velkov, and M. Yankova. A
scalable repository for massive semantic annotation. Tech-
nical Report D2.6.3, SEKT project, 2007.

[10] J. Zhou, L. Ma, Q. Liu, L. Zhang, Y. Yu, , and Y. Pan. Min-
erva: A scalable OWL ontology storage and inference sys-
tem. In Proc. of Asia Semantic Web Conference (ASWC),
pages 429–443, 2006.

7

