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Abstract. We discuss our DLDB knowledge base system and evaluate its ca-
pability in processing a very large set of real-world Semantic Web data. Using
DLDB, we have constructed the Hawkeye knowledge base, in which we have
loaded more than 166 million facts from a diverse set of real-world data sources.
We use this knowledge base to demonstrate realistic integration queries in e-
government and academic scenarios. In order to support Hawkeye, we extended
DLDB with additional reasoning capabilities. At present, the Semantic Web con-
sists of numerous independent ontologies. We demonstrate that OWL can be used
to integrate these ontologies and thereby integrate the data sources that commit
to them. In terms of performance, we show that the load time of our system is
linear on the number of triples loaded. Furthermore, we show that many complex
queries have response times under one minute, and that simple queries can be
answered in seconds.

1 Introduction

The 2005 index of Swoogle [2] contained 850,000 of Semantic Web documents, in
2006 this index had 1.5 million SW documents and at the time of writing this paper
it boasts a staggering 2.1 million SW Documents. The Semantic Web is growing and
clearly scalability is an important requirement for Semantic Web systems. Furthermore,
the Semantic Web is an open and decentralized system where different parties can and
will, in general, adopt different ontologies. Thus, merely using ontologies, does not
reduce heterogeneity: it just raises heterogeneity problems to a different level. Without
some form of alignment, the data that is described in terms of one ontology will be
inaccessible to users that ask questions in terms of another ontology. In this paper we
present a scalable system (166 million triples) and a knowledge base that has been
integrated using only OWL axioms (as opposed to special purpose mapping languages).

We put forward that, in addition to providing semantics to the data, OWL can also
be used to establish alignments between these heterogeneous web sources. Using map
ontologies, ones that contain OWL axioms that align the concepts of two ontologies, we
have integrated many autonomous data sources and successfully demonstrated useful
queries. For example, consider a researcher looking for colleagues to collaborate with
her in a paper. One heuristic she may apply in her search is to look for people who
have cited a paper that has been cited by her in her other publications. Obviously, this



can be done using Google, but it will require several intermediate steps to meet her
specific information need. Our system can get her the answer from two different sources
(Citeseer and DBLP) in just a few seconds. We discuss this query and others that we
have tested in Section 3.2

Before we present our work, we would like to briefly review the state of the public
Semantic Web. We note that there are several traits that we have observed in the existing
Semantic Web data (indexed by Swoogle) that influenced our design choice.

First, we observe that if we account for minor syntactic errors (e.g. missing a type
declaration) most of the ontologies in the current Semantic Web have an expressivity
equivalent or less than OWL DL. As these syntactic issues can be programmatically re-
solved, most of the OWL Full ontologies can be easily converted to OWL DL, which is
most likely what the developer had intended [1]. In a recent survey of ontologies, Wang
et al. [13] report similar syntactic errors leading to OWL Full ontologies. Therefore, our
system’s overall focus is to support OWL DL as opposed to OWL Full.

Second, we have observed that the ontologies and data from the social network do-
main are currently dominating the Semantic Web landscape. The most frequently used
ontology in the Semantic Web is the Friend of A Friend (FOAF) ontology. It is interest-
ing to note that although FOAF was originally designed for individuals to make their
profiles available to public, the prevalence of FOAF data is due to Blog sites and social
network sites (LiveJournal, etc.) which generate FOAF data from users’ public profile.
Each site generates its own URI for an individual and therefore we have several differ-
ent URIs pointing to the same object. This is essentially an entity resolution problem.
In order for us to have a plausible integration of the Semantic Web, we needed to re-
solve these duplicate entities, establish alignments and add instance equality reasoning
to DLDB system. The owl:InverseFunctionalProperty has helped us in this task. Basi-
cally if a property, p, is annotated as InverseFunctionalProperty, then ∀ x, y, z p(y,x) ∧
p(z,x) → y = z. With the FOAF data we have used InverseFunctionalProperty to state
for example if two individuals (two distinct URIs) have the same email address then
they essentially are the same individual.

Third, we have observed that it is important to support the TransitiveProperty at-
tribute of OWL properties. There are several ontologies in the Semantic Web that de-
scribe properties in terms of this characteristic. For example, many ontologies have
made use of transitive properties such as hasPart and subLocationOf. SKOS, the World
Wide Web Consortium’s recent effort in describing a controlled vocabulary for thesauri,
classification schemes, subject heading systems and taxonomies within the framework
of the Semantic Web, makes extensive use of transitive properties

In what follows we first describe our enhanced DLDB system. We present its ar-
chitecture, design and implementation with a focus on the additional reasoning and
optimizations that we have added to the system based upon the characteristics of the
Semantic Web. After presenting the system we then describe our Hawkeye knowledge
base and at the end present related work and conclude. Note: in this paper we build on
our initial work [11] in this area and now present a more comprehensive demonstration
on a larger set of Semantic Web data.



2 DLDB: A Semantic Web Query Answering System

The initial architecture of DLDB is presented in [10]. It is a knowledge base system
that extends a relational database management system with additional capabilities for
partial OWL reasoning. The DLDB core consists of a Load API and a Query API im-
plemented in Java. Any DL Implementation Group (DIG) compliant DL reasoner and
any SQL compliant RDBMS with a JDBC driver can be plugged into DLDB. This flex-
ible architecture maximizes its customizability and allows reasoners and RDBMSs to
run as services or even clustered on multiple machines.

It is known that the complexity of complete OWL DL reasoning is NEXPTime-
complete. Our pragmatic approach is to trade some completeness for performance. The
overall strategy of DLDB is to find the good balance of precomputation of inference
and run-time query execution via standard database operations. Whenever DLDB loads
an RDF/OWL file it determines if it is an ontology or instance data document. Ontolo-
gies are first processed by the DL reasoner in order to compute implicit subsumptions
and the results are used to create tables and views in the database. Instance data are
directly loaded into the database tables. The consideration behind this approach is that
DL reasoners are optimized for reasoning over ontologies, as opposed to instance data.

DLDB facilitates integration by supporting the perspectives presented in Heflin and
Pan [5]. Ontology perspectives allow the same set of data sources to be viewed from
different contexts, using different assumptions and background information. Each per-
spective will be based on an ontology. Thus, data sources that commit to the same
ontology have implicitly agreed to share a context. When it makes sense, we also want
to maximize integration by including data sources that commit to different ontologies.
We require that each Semantic Web query to be associated with a particular perspective,
so that the answers to a query depend on the entailment of the perspective. For exam-
ple, when the perspective is based on different mapping ontologies, a query would get
different answers resulting from different mapping axioms.

In DLDB, creating tables corresponds to the definition of classes or properties in
ontology. Each class and property has a table named using its URI. This means new
tables are created as new ontologies are discovered. In DLDB, class hierarchy informa-
tion is stored through database views. The view of a class is defined recursively. It is the
union of its table and all of its direct subclasses’ views. Hence, a class’s view contains
the instances that are explicitly typed, as well as those that can be inferred.

DLDB currently supports conjunctive queries. In terms of query language, DLDB
supports a subset of SPARQL, namely the SELECT query form, combined with the
triple pattern and filter that allows numeric types. We think this subset covers most of
the frequently posed extensional queries. We plan to support some useful modifiers such
as “ORDER BY” and filters on date.

During query execution, predicates and variables in the query are substituted by
table names and field names through translation. Depending on the perspective being
selected, the table names are further substituted by corresponding database view names.
Finally, a standard SQL query sentence is formed and sent to the database via JDBC.
Then the RDBMS processes the SQL query and returns appropriate results.
Instance Equalities. OWL does not make the unique names assumption, which means
that different names do not necessarily imply different objects. Given that many indi-



viduals contribute to the Web, it is highly likely that different IDs will be used to refer
to same object.

In DLDB, each unique URI is assigned a unique integer id. Our approach to equal-
ity is to designate one id as the canonical id and globally substitute the other id with
this canonical id in the knowledge base. The advantage of this approach is that there
is effectively only one system identifier for the (known) individual, nevertheless that
identifier could be translated into multiple URIs. Since reasoning in DLDB is based
on these identifiers instead of URIs, the existing inference and query algorithms do not
need to be changed to support equalities.

However, in many cases, the equality information is found much later than the data
that it “merges”. Thus, each URI is likely to have been already used in multiple asser-
tions. Finding those assertions is especially difficult given the table design of DLDB,
where assertions are scattered into a number of tables. It is extremely expensive to
scan all the tables in the knowledge base to find all the rows that use a particular id.
We devised auxiliary tables to keep track of the tables that each id is appeared in. An
Individual Occurrence table is used to record the the occurrences of each id. To
substitute an id with another id, the procedure queries those auxiliary tables to find the
set of tables (and columns) upon which an update is issued to perform the substitution.

Often times, the knowledge on equality is not given explicitly. Equality could re-
sult from inferences across documents: owl:FunctionalProperty , owl:maxCardinality
and owl:InverseFunctionalProperty can all be used to infer equalities. DLDB is able to
discover equality on individuals using a simple approach. If two URIs have the same
value for an owl:InverseFunctionalProperty, they are regarded as representing the same
individual. A naive approach is to check it every time a value is being inserted into an
inverse functional property table. However, this requires a large number of queries and
potentially a large number of update operations. In order to improve the throughput of
loading, we developed a more sophisticated approach which queries the inverse func-
tional property table periodically during the load. The specific interval is specified by
users based upon their application requirements and hardware configurations (we used
1.5 million in our experiment). This approach not only reduces the number of database
operations, but also speeds up the executions by bundling a number of database opera-
tions as a stored procedure.

Transitive Closure and Its Interaction with Other Reasoning. One of the ABox rea-
soning tasks is to infer implicit property assertions through the transitive property. This
task can be regarded as computing a transitive closure over a directed acyclic graph. In
DLDB, we must also address how these algorithms interact with other reasoning. One
of the existing algorithms is to maintain the transitive closure from scratch, i.e. start-
ing from when the table is empty [3]. Each time a new pair is added, the maintenance
algorithm will compute new relations and add them to the table so that the table cor-
responds to its transitive closure. However, this algorithm would not work under some
circumstances. For example, the property isIn is transitive, whereas its two subproper-
ties: isInState and isInRegion, are not (and should not be) transitive. If the data only
contains instances of isInState and isInRegion, no transitive closure algorithm could be
invoked. When isIn is queried, its transitive closure has not been computed. Note, it is



difficult to continuously maintain the transitive closure of a view because the insertions
go through its underlying tables.

Our adapted algorithm, which runs periodically, joins the view iteratively until a
fixed point is reached. This algorithm uses a temp table to record the results of joining
the view of a property with itself and a delta table to record the results that are new to
the property table. Then the iterations only join the property view with the delta table,
which is usually much shorter than the property table. This algorithm also takes care of
the perspectives, which allows different ontologies to independently describe a property
as transitive or not. Details about the algorithms mentioned in this section can be found
in our technical report [9].

3 The Hawkeye Knowledge Base

This section has two main objectives. First, we want to evaluate the new reasoning
capabilities of DLDB. Second, we want to demonstrate the ability to answer realistic
queries in the Semantic Web from distributed and heterogeneous data sources. Unfor-
tunately, existing data on the Semantic Web tends to be unrelated. In order to make the
queries interesting we needed to augment existing Semantic Web data with some new
data sources. We focus on two scenarios which involve data associated with academic
publications and government activities.

3.1 Data Sources and Maps

Table 1 describes the data sources used in our scenarios. The first column lists the
shorthand prefixes we assigned to each data source.

The e-government scenario uses g (daml.org), c (house.gov), b (govtrack.us) and n
(govtrack.us) data sources. The academic publication scenario uses d (dblp.uni-trier.de),
s (citeseer.ist.psu.edu), a (aigp.csres.utexas.edu), w (nsf.gov) and f (found from Swoogle’s
crawl) data sources.

To augment our Semantic Web data we transformed the data from these sources
to RDF which commits to valid ontologies. For sources originally in XML format, we
developed an ontology for each of them based on their XML schema and developed
domain specific scripts to translate the XML to conforming RDF. For each of those
sources originally in HTML pages, we developed a crawler to collect the pages and a
scraper which extracts the desired information from these pages. We then developed
ontologies for each of them and generated conforming RDF for the scraped data.

The purpose of using data from multiple sources is that a single source doesn’t
hold all the information for a certain individual. When different URIs are used to re-
fer the same individual, we must explicitly annotate that they are equivalent using the
owl:sameAs property. There are a number of techniques with varying accuracy for auto-
matic co-reference resolution. We try to match the names of individuals (e.g. Authors)
from each of the sources using simple string matching techniques. In the case of FOAF,
our system relies on inverse functional properties to infer equivalence of individuals.
Totally, we created 109,790 sameAs statements between 4 pairs of data sources.



Pre Data Source Original Format Classes Properties Triples
a AIGP No Ontology AIResearcher hasAdvisor 5973

Set of HTML Pages influencedBy
hasInfluenced

b Bill Data No Ontology Politician name 75711
RDF Bill sponsoredBy

c 107th Congress No Ontology Member party, isIn 2628
XML Data USCD fromUSCD

d DBLP No Ontology Article author 15523209
XML Data foaf:Person coauthor

f FOAF RDF Schema Ontology Person knows 11601453
g Geographic Data DAML Ontology USRegion memberstate 578

DAML Data USState region
n Census Data No Ontology State population 314

N3 File landarea
s Citeseer No Ontology Article author, coauthor 7630021

XML Data foaf:Person references
w NSF Awards Data No Ontology NSFAward principalInvestigator 462102

Set of HTML Pages state

Table 1. Data sources summary

To use the concepts and properties of different ontologies, we must explicitly spec-
ify the relationships between them. For this we need to use OWL axioms in a separate
ontology which we call the map ontology. For example, for the academic domain the
property dc:creator used in the Citeseer ontology is a super property of the property
author used in the DBLP ontology.

3.2 Performance

We have used Swoogle’s 2006 index as our dataset along with the data we prepared that
described above. The DLDB main program runs on a workstation featuring dual 64-
bit CPUs and 10GB main memory. The RDBMS is MySQL 5.0 and the DL reasoner is
RacerPro. It took 650 hours to process the 1.7 million urls from Swoogle. Many of these
had not been successfully downloaded due to various network issues, such as HTTP404
and connection timed out. We successfully retrieved 759,834 SW documents; the time
to load and process just these documents is about 350 hours. In total 16,280 among them
are identified as ontologies by Hawkeye. It takes approximately 18 gigabytes disk space
for the RDBMS to store the 166M resulting triples. To the best of our knowledge this
is the largest load of diverse, real-world Semantic Web data. This once again validates
that the DLDB approach scales fairly well.
Load Performance. The chart in Figure 1 shows the cumulative load time after each
million triples loaded into the system. In general we see that the load time increases
gradually and our system scales well. Note the “local” time is defined as the total time
minus the time spent in transferring the documents from a remote host. The “limited



reasoning” time is the local time minus the time spent in batch processing of ABox
reasoning (including InverseFunctionalProperty and transitive closure inference). The
steep slope from 43 to 49 million triples corresponds to the identification of a bug in
our code and its subsequent correction. The steep slope at the end of the curves is
contributed by a large number of explicit sameAs statements in the DBLP and Citeseer
data. These statements were loaded after the data they mapped, thereby requiring a lot
of substitutions. In a typical data load, the sameAs statements would be interspersed
with the data and processing would be faster.

Fig. 1. Hawkeye Cumulative Load time

Query Performance. In order to evaluate the query performance of Hawkeye, we used
the six query templates described in Table 2. For each query template, we listed the
inferences and the data sources. Note the mappings between different sources are in-
dispensable too. Table 3 shows the query performance of our system. For each query
template, we issued a number of variations by changing the constants in the query. We
then calculated the average and standard deviation of the response time. Most of the
queries finished very quickly (in less than a minute). We also calculated the percentage
of the non-zero answers and the average number of results for each query template.
The high percentages of the non-zero answers demonstrates a significant degree of in-
tegration of the sources, particularly with respect to entity resolution. If our mapping
ontologies or individual maps were insufficient, we would get many (perhaps even all)
queries with 0 answers.

4 Lessons Learned

In working with real Semantic Web data, we have encountered many interesting chal-
lenges. In this section, we summarize those challenges and our experiences.

In looking at the real data and our experiment, we found out that for a practical
Semantic Web knowledge base system, the key inference capabilities are individual



Query Description Inferences Sources
Pol1 Find a politician from a region subClassOf g,c,b

who has sponsored a bill in some specific topic TransitiveProperty
Pol2 Find bills sponsored by a given equivalentClassOf c,b,n

politician and the population of his state
Pol3 Name of the politicians who come from TransitiveProperty g,c

a certain region
Aca1 Find articles written by a Professor’s advisees sameAs d,s,a
Aca2 Find people who I know who have sameAs, inverseOf d,s,f

cited a paper also cited by me InverseFunctionalProperty
Aca3 Find academic influence of a researcher sameAs d,s,a

(articles written by all people in the advisee chain) TransitiveProperty
Aca4 Find publications of the AIResearchers from a sameAs d,s,a,w

certain state who have been awarded NSF grants subClassOf

Table 2. Query descriptions

Response time (ms) No. of results
Query template No. of variations Avg. Stdev. %of non-zeros Avg
Pol1 300 871 635 90 63
Pol2 300 1018 897 100 115
Pol3 300 53 22 95 89
Aca1 200 24151 632 95 326
Aca2 20 345906 32149 87 1626
Aca3 200 24659 654 95 3549
Aca4 51 25318 2063 90 10245

Table 3. Query performance

equivalence (both explicit and inferred), subclass / subproperty inference, inverse prop-
erty, transitive property. These were sufficient to do integration and testing of the many
web sources that we looked at. Note, arithmetic would probably be critical too (for unit
conversion), but OWL doesn’t support it.

Our DLDB design occasionally forms queries that the underlying database man-
agement system finds difficult to optimize. For example, one of our queries (Aca 2
in Table 2) took about 6 minutes to complete. This is due to the fact that it uses the
foaf:knows property which has 16 million instances in our database. We performed
some tests where we manually re-wrote the view for the foaf:knows property. We no-
ticed that the query over this view had a constant expression in the where clause that
would reduce the view scope. By moving the constant expression from the where clause
of the query to the where clause of the view we were able to reduce the query execution
to 3 minutes. We believe that future work can be done in order to create an algorithm to
automatically optimize the queries which will increase the performance considerably.

During the implementation of DLDB, we observed that if precomputation of ABox
reasoning is needed, it is faster to do it in batch, rather than doing it per assertion. For



example, when discovering individual equalities, our batch approach not only reduces
the number of database operations, but also speeds up the executions by bundling a
number of database operations as a stored procedure.

5 Related Work

We claim that this is the first attempt to load the real Semantic Web data into a single
knowledge base system. We should however note that there are several projects that
process the Semantic Web in various other ways. For example, Swoogle [2] is the largest
index of Semantic Web documents. However, Swoogle’s query and retrieval mechanism
is basically an information retrieval system. This does not exploit the reasoning that can
be done over Semantic Web data.

There are some ongoing efforts to bootstrap the Semantic Web by providing on-
tologies and reusable knowledge bases, such as TAP [4]and “CS AKTive Space” [12].
Although they have large amounts of data, they each assume a common ontology.

In the past few years there has been a growing interest in the development of sys-
tems that will store and process large amount of Semantic Web data. The general de-
sign approach of these systems is similar to ours, in the sense that they all use some
database systems to gain scalability while supporting as much inference as possible by
processing and storing entailments. However, most of these systems emphasize RDF
and RDF(S) data at the expense of OWL reasoning. Some systems resemble the capa-
bilities of DLDB, such as KAON2 [6], which uses a novel algorithm to reduce OWL DL
into disjunctive datalog programs. OWLIM [7] uses a rule engine to support a limited
OWL-Lite reasoning. Minerva [14] uses DL reasoner to do TBox reasoning and a rule
engine to do ABox reasoning. It is claimed to be sound and complete on DHL (a subset
of OWL-DL) ontologies and reportedly less scalable than DLDB in terms of load time
[14]. Both OWLIM and Minerva chose the “vertical” table design. To the best of our
knowledge, none of the systems above have been used with a real world Semantic Web
data at this scale (166M triples) , though BigOWLIM [8] has been claimed to support 1
billion triples of artificially generated data.

6 Conclusion and Future Work

In this paper we present an enhanced version of our DLDB system.We have extended
our previous work by identifying and implementing critical inference capabilities and
optimizing the system so that it can now handle at least 166 million facts as opposed to
the 45 million of the previous version. The performance on query response time remains
highly scalable, most of the queries in our experiment can be finished in less than one
minute. We use ontology alignments expressed in OWL to provide a uniform view of
the Semantic Web to the user We defer integration until query time and thus provide
a framework where the user is not bound by a predetermined schema. Our ontology
perspective mechanism gives the user the flexibility to choose the type of integration
(s)he desires. Our maps do not need any additional language primitives beyond OWL.
Therefore the maps as created and published become part of the Semantic Web. We
put forward that scalability is more critical in processing the data sources as opposed



to ontologies, because data sources will substantially outnumber the ontologies in the
Semantic Web.

Although we believe our work is a first step in the right direction, we have discov-
ered many issues that remain unsolved. First, although our system scales well to the
current size of the Semantic Web, it is still unknown if such techniques will continue to
scale well as the Semantic Web grows. Second, we will investigate query optimization
techniques that can improve the query response time.
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