
An Investigation into the Feasibility of the Semantic Web

Zhengxiang Pan, Abir Qasem, and Jeff Heflin
Department of Computer Science and Engineering, Lehigh University

19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.
{zhp2,abq2,heflin}@cse.lehigh.edu

Abstract

We investigate the challenges that must be addressed for the
Semantic Web to become a feasible enterprise. Specifically
we focus on the query answering capability of the Semantic
Web. We put forward that two key challenges we face are
heterogeneity and scalability. We propose a flexible and de-
centralized framework for addressing the heterogeneity prob-
lem and demonstrate that sufficient reasoning is possible over
a large dataset by taking advantage of database technologies
and making some tradeoff decisions. As a proof of concept,
we collect a significant portion of the available Semantic Web
data; use our framework to resolve some heterogeneity and
reason over the data as one big knowledge base. In addition
to demonstrating the feasibility of a “real” Semantic Web, our
experiments have provided us with some interesting insights
into how it is evolving and the type of queries that can be
answered.

Introduction
The Semantic Web envisions a web of ontologies and asso-
ciated data, which will augment the present Web by adding
formal semantics to its documents. By transforming the
Web from a collection of documents to a collection of se-
mantically rich data sources, the Semantic Web promises an
unprecedented benefit of a global knowledge infrastructure.
In addition, the idea of using knowledge representation in a
Web friendly manner makes the emerging Semantic Web an
ideal test bed for AI applications. However, there are three
key questions that have to be addressed before the Semantic
Web becomes a feasible enterprise. They are:

1. Who will annotate the data?

2. Without any centralized control how will all this data be
connected to one another?

3. Will the existing AI techniques be sufficient to process
this huge amount of data?

The first question has received significant attention in re-
cent years. The proliferation of tools and services that can
automatically generate Semantic Web data and advances in
ontology learning techniques (Maedche & Staab 2001), are

Copyright c© 2006, American Association for Artificial Intelli-
gence (www.aaai.org). All rights reserved.

indicators that we are making good progress towards over-
coming the annotation problem of the Semantic Web. How-
ever, the latter two questions in our opinion have not re-
ceived the attention they deserve.

The second question stems from the inherent autonomous
nature of the Web. While this autonomy definitely fuels
the Web’s phenomenal growth, it also increases the hetero-
geneity of the information sources. This heterogeneity is
equally likely to occur in the Semantic Web. Without a sim-
ple (hence easily adaptable) mechanism to address this het-
erogeneity, it will be difficult to realize the full potential of
the Semantic Web.

The third question revolves around the scalability issue of
AI systems. At the time of writing of this paper, the num-
ber of Resource Description Framework (RDF) documents,
cached by Google was about 2.8 million. The Semantic Web
search engine Swoogle (Ding et al. 2005) currently boasts
an index of 850K of Semantic Web documents and more
than doubled its index in less than a year. Even in its infancy,
Semantic Web data (45 million triples as per Swoogles in-
dex of November 2005) is too large for typical reasoning
systems. Most of these systems implement the reasoning
process in main memory. A size of more than 45M triples
places the existing Semantic Web well beyond the reach of
many advanced AI systems. Given that the Semantic Web is
starting to reach critical mass, we believe the time is right to
begin exploring the last two questions.

In this paper we try to do reasoning on this heterogeneous
and massive Semantic Web. Specifically we focus on the
query answering capability of the Semantic Web. We should
note here that there are several other possible applications of
the Semantic Web. In recent years the Semantic Web has
been touted as an infrastructure for automatic web service
composition and autonomous web agents that perform trans-
actions on behalf of a user. However, we believe answering
a query by means of logical reasoning lies in the core of
original Semantic Web vision. Furthermore, query answer-
ing complements the other applications. For example, an
agent working for a user will perform better if it has ac-
cess to richer query answering facilities. To the best of our
knowledge this is the first attempt to reason with a substan-
tial amount of authentic Semantic Web data. Specifically
we make three contributions. First, we provide a decentral-
ized framework to integrate data sources that use different



vocabularies. Second, we propose a mechanism to realize
this framework. And finally we describe a system that uses
this mechanism to integrate the existing Semantic Web data
and demonstrate that our system is capable of performing
scalable reasoning on the real Semantic Web.

The following is the outline of our paper. First, we discuss
the heterogeneity problem on the Semantic Web and intro-
duce our framework for addressing this issue. Then we de-
scribe a mechanism that allows us to work in our framework.
After that we describe our Semantic Web Knowledge Base
system. We then describe our experience in working with
the real Semantic Web. Specifically we describe the chal-
lenges faced in loading, aligning and querying this hetero-
geneous and massive data set and how we addressed some
of them. We finally discuss some related work, make some
conclusions and provide some future research direction.

Heterogeneity and the Semantic Web
An initial inspection of the data revealed that many terms
with different URIs 1 have identical local names. In fact,
this type of synonymy amounts to about 50% of the terms in
our data. Among those terms, each local name on average is
defined by 4.2 different ontologies. Our initial investigation
supports our hypothesis that the Semantic Web is and will be
a heterogeneous medium, however a more thorough analysis
is still needed.

Another trend in the Semantic Web, is the proliferation
of data that commits to simple ontologies like FOAF. FOAF
data currently makes the bulk of the Semantic Web docu-
ments. The simplicity of the ontology facilitates automatic
generation of data and is the main reason for such prolifer-
ation. Although a large collection of data that has relatively
simple semantics can still make for some very interesting
applications (Mika 2005), much more can be achieved if we
can somehow add a layer of semantics on the FOAF ontol-
ogy and then exploit the vast FOAF data with more advanced
reasoning.

The trends described above require us to establish align-
ments between terms of different ontologies. Our approach
is to use axioms of OWL, the de facto Semantic Web lan-
guage, to describe a map for a set of ontologies. The axioms
will relate concepts from one ontology to the other. An ap-
plication can consult this map to retrieve information from
sources that may have otherwise appeared to be providing
differing information. In our framework, a map is an on-
tology that imports these ontologies and aligns their terms.
It is obvious that we will not have direct mapping between
all ontologies, however it should be possible to compose a
map from existing maps by traversing through a “semantic
connection” of maps. In the sense we now have a web of
ontologies as opposed to a web of documents.

We would like to note several points about our mapping
framework. First, there is a well-established body of re-
search in the area of automated ontology alignment. This
is not our focus. Instead we investigate the application of
these alignments to provide an integrated view of the Se-
mantic Web data. Second, in our framework anyone can

1A URI consists of a namespace and a local name.

create a mapping ontology between two or more ontologies,
and publish that ontology for use by all. The ontology per-
spective mechanism that we describe in next section allows
a user to select a mapping (or have one selected for them) in
order to integrate data sources.

Ontology Perspectives
Heflin (2001) has observed that there may not be a universal
model of all the data sources and ontologies on the Web. In
fact, it is extremely unlikely that one could even exist. In-
stead, we must allow for different viewpoints and contexts,
which are supported by different ontologies. He defines per-
spectives which then allow the same set of data sources to be
viewed from different contexts, using different assumptions
and background information. A model theoretic description
of perspectives is presented in (Heflin & Pan 2004). In this
section, we set aside the versioning issues in that paper and
show how these simplified perspectives would work for our
framework by introducing some essential definitions.

Each perspective will be based on an ontology, hereafter
called the basis ontology or base of the perspective. By pro-
viding a set of terms and a standard set of axioms, an ontol-
ogy provides a shared context. Thus, data sources that com-
mit to the same ontology have implicitly agreed to share a
context. When it makes sense, we also want to maximize in-
tegration by including data sources that commit to different
ontologies.

We now provide informal definitions to describe our
model of the Semantic Web. A semantic web space W is
two-tuple 〈O, R〉, where O is a set of ontologies and R is
a set of resources. We then define an ontology perspective
model of a Semantic Web space:

Definition 1 (Ontology Perspective Model) An interpre-
tation I is an ontology perspective model of a semantic web
space W = 〈O, R〉 based on O ∈ O (written I|=OW ) iff:

1. I is a model of O
2. for each r ∈ R such that r commits to O or an ancestor

of O, I is a model of r.

The definitions of ontology and resource models can be
found in (Heflin & Pan 2004). Ontology perspective entail-
ment follows the typical definition of entailment. We use
W|=Oφ to denote that the ontology perspective of W based
on O entails φ.

Theoretically, each of these perspectives represents a sin-
gle model of the world, and could be considered a knowl-
edge base. Thus, the answer to a semantic web query must
be relative to a specific perspective.

Definition 2 A Semantic Web query is a pair 〈Oi, ρ〉 where
Oi is the base ontology of the perspective and ρ is a for-
mula with existentially quantified variables. An answer to
the query 〈Oi, ρ〉 is θ iff W|=Oθρ where θ is a substitution
for the variables in ρ.

In order to relate our framework to the perspectives, we
now define the minimum mapping ontology between Oi and
Oj is Om, where Om extends Oi and Ojand contains the
axioms that map their vocabularies.



Figure 1: The Architecture of DLDB

Let’s take an example to see how our definitions can be
applied to the real ontologies. Imagine we have two simple
ontologies. O1 defines concept Car and O2 defines con-
cept Automobile. Two data sources commits to them re-
spectively: r1 states {ezz3290 ∈ O1 : Car} and r2 states
{dfg2134 ∈ O2 : Automobile}. A map between O1 and
O2 would be an ontology Om12 that imports O1,O2 and has
the axiom {O1 : Car ⇔ O2 : Automobile}. We have a
query formula Car(x). If the query’s perspective is based
on either O1 or O2, there would be one or zero answers.
However, by choosing Om12 as the perspective, the query
will retrieve both instances.

We argue that our perspectives have at least two advan-
tages over the traditional KR languages. First, the occur-
rence of inconsistency is reduced compared to the global
views, since only a relevant subset of the Semantic Web
is involved in processing a query. Even if two ontologies
have conflicting axioms, inconsistency would not necessar-
ily happen in most perspectives other than the ones that are
based on their common descendants. Second, the integra-
tion of information resources is more flexible compared to
local views, since any two data sources could be included in
the same perspective as long as the ontologies they commit
to are both being extended by a third ontology. This third
ontology is likely to be the mapping ontology that serves as
the perspective.

DLDB: A Semantic Web Query Answering
Engine with Perspective Support

DLDB (Pan & Heflin 2003) is a knowledge base system that
extends a relational database management system with ad-
ditional capabilities for partial OWL reasoning. As shown
in Figure 1, the components in DLDB are loosely coupled.
The DLDB core consists of Load API and Query API imple-
mented in Java. Any DL Implementation Group(DIG) com-
pliant DL reasoner and any SQL compliant RDBMS with
JDBC driver can be plugged into DLDB. This flexible archi-
tecture maximizes the customizability and allows reasoners
and RDBMS run as services or even cluster on multiple ma-
chines.

Note we have extended DLDB to support perspectives.

The following description is specific to this extended version
of DLDB.

The basic table design of DLDB adopted an approach that
is similar to the “Schema-aware” representation in (Theo-
haris, Christophides, & Karvounarakis 2005). According to
this approach, creating tables corresponds to the definition
of classes or properties in ontology. The classes or proper-
ties’ ID should serve as the table names. Since each row in
the class tables corresponds to an instance of the class, an
’ID’ field is needed here to record the ID of the instances.
The rest of the data about an instance is recorded using the
table per property (aka decompositional) approach. Each in-
stance of a property must have a subject and an object, which
together identify the instance itself. Thus the ’subject’ and
’object’ fields are set in each table for property. Normally,
the ’subject’ and ’object’ fields are foreign keys from the
’ID’ field of the class tables that are the domain and range of
the property, respectively. However, if the property’s range
is a declared data type, then the ’object’ field is of corre-
sponding datatype. This approach makes it easy to answer
some queries with data constraints, such as finding individ-
uals whose ages are under 21. In addition, to shrink the size
of database and hence reduce the average query time, DLDB
assigns each URI a unique ID number.

In DLDB class hierarchy information is stored through
views. The view of a class is defined recursively. It is
the union of its table and all of its direct subclasses’ views.
Hence, a class’s view contains the instances that are explic-
itly typed, as well as those that can be inferred.

Using OWL’s constraints for class description, a DL rea-
soner can compute class subsumption, i.e., the implicit
rdfs:subClassOf relations. DLDB uses a DL reasoner
to precompute subsumption, and then uses the inferred class
taxonomy to create class views. Thus, DLDB only consults
the DL reasoner once for each new ontology in the knowl-
edge base. Whenever queries are issued concerning the in-
stances of the ontology, the inferred hierarchy information
can be automatically utilized. We think that as a query an-
swering engine, DLDB’s precomputation improves the com-
putational efficiency which can save time as well as system
resources.

Following the definitions of perspectives, every time
DLDB loads a new ontology O, it actually sends O with
all the ancestors of O to the reasoner for precomputation.
Since different perspectives may have different axioms asso-
ciated with a class / property and hence have different sub-
sumptions returned by reasoner, DLDB also creates views
on each ancestor’s classes and properties but does not create
tables for them. The views are virtual queries, so that the
number of views has little impact on the size of the data-
base. Meanwhile, the query based on different perspectives
will be translated into corresponding database views.

However, without the separate tables, the instances that
commit to different ontologies are indistinguishable. This
is problematic as the perspective model does not include
the data sources that commit to a descendant ontology. To
solve this problem, we add a new field in every class table,
namely the ’onto’ field. Thus, each instance of a particular
class is recorded by its ID, its source document’s ID and the



ID of the ontology to which the data source commits. The
example tables would be
O1:Student(ID, Source, Onto)
O1:takesCourse(Subject, Object, Source,
Onto)
Consider that in ontology O1 the class Student is
defined as all the people who take a Course, the class
GradStudent is defined as all the people who take a
GradCourse, and the class GradCourse is a subclass
of Course. Then, by OWL entailment we can conclude
that GradStudent is a subclass of Student. Thus, if
we call the class view creation algorithm after interaction
with a DL reasoner, the view of Student will be defined
as:
CREATE O1:Student:viewBy:O1 AS
SELECT * FROM O1:Student WHERE
O1:Student.Onto=O1
UNION SELECT * FROM
O1:UndergraduateStudent:viewBy:O1
UNION SELECT * FROM
O1:GradStudent:viewBy:O1;
Since the views are defined recursively, the indirect
subsumptions can be automatically taken care of by the
database system.

Note <A owl:equivalentClass B>
is implemented as <A rdfs:subClassOf
B> plus <B rdfs:subClassof A>. For
properties, the rdfs:subProperty and
owl:equivalentProperty relations are handled
in the same way. In addition, owl:inverseOf relations
are supported in the property view creation algorithm.

Currently, DLDB is known to be incomplete with re-
spect to transitive properties and class membership realiza-
tion through restrictions, but supports most other OWL DL
features depending on the capability of underlying DL rea-
soner. Note the queries supported by current DLDB fall un-
der extensional conjunctive queries.

Experiment
The broader goal of our experiment is to gather evidence re-
garding the feasibility of the Semantic Web. We wanted to
see if our framework and the DLDB approach to scalable
reasoning at least begin to address the last two of the three
questions we posed at the beginning of the paper. The re-
sults are encouraging. DLDB has scaled well and the map-
ping framework with perspectives provided successful inte-
gration of disparate data.

The specific DLDB configuration we used in loading and
querying the Semantic Web is as follows: the DLDB main
program runs on a SUN workstation featuring dual 64-bit
Opteron CPUs and 2GB main memory. The backend DBMS
is PostgreSQL 8.0 running on the same machine. The DL
reasoner is Racer Pro 1.9 running on another Windows pow-
ered machine. Both machines are connected via 100 Base-T
Ethernet.

We have used Swoogle’s 2005 index as our dataset. Of
the 364,179 urls that we got from Swoogle, we successfully
loaded 343,977 SW documents in 15 days and 15 hours.
In total 41,741 among them are identified as ontologies by

DLDB. It takes approximately 8 gigabytes disk space for the
RDBMS to store the 45M triples. To the best of our knowl-
edge this is largest load of a diverse real world Semantic
Web data. This once again validates that DLDB approach
scales fairly well.

Since our experiment is a pioneering attempt to treat
the Semantic Web as a singular knowledge base and pose
queries to it, naturally we did not have access to query pat-
terns or query logs that would allow us to choose “typi-
cal” queries. For this experiment we have selected queries
which can showcase the possibilities of an integrated Se-
mantic Web using existing data. Note, limitations in avail-
able data sometimes placed severe constraints on the kinds
of queries we could ask.

From the statistics about the identical local names in the
second section, it is obvious that we need to map a large
number of concepts with each other to have a fully integrated
Semantic Web. However, the size of the Semantic Web dic-
tates that we use some form of automated ontology mapping
tool to address this problem. We note, that there are several
ongoing research projects in this area (Noy & Musen 2002)
but we chose to apply a heuristic described below to select
our maps. We do this because in this paper our goal is not
to present a comprehensive set of maps but rather to demon-
strate the potential for integration in the Semantic Web.

In order to meet our objective, we have adopted the fol-
lowing strategy. We perform a breadth analysis where we try
to come up with maps that will loosely align a large number
of ontologies. We also perform a depth analysis where we
try to come up with maps that will tightly align a few on-
tologies. In each case we examine the effect of integration
on results retuned by various queries.

In breadth analysis we select mapping candidates that will
have the highest “integratiblity”. We loosely define the “in-
tegratiblity” of a concept as its potential to connect multiple
ontologies. Specifically, in this experiment, we have con-
sidered integratiblity of a concept to be the frequency of its
occurrence in different ontologies. We use a combination of
manual inspection and semi automatic filtering to determine
concepts with high integratiblity. The main idea behind this
heuristic is that these concepts will give us the most integra-
tion with least amount of effort. We mapped concepts that
have the highest frequency of occurrence, shown in the table
below. Note, here we only considered the concepts that have
instance data:

Concept Frequency of occurrence
Person 10
Country 10
Project 7
City 5
University 4
We note two aspects of the above findings. First, a more

careful analysis must be done to come up with a better in-
tegratiblity measure. For example, we need to identify syn-
onyms or sub class / super class of a concept and identify
those in different ontologies. Although they may not weigh
as much as a direct match, they contribute to determining in-
tegratability. Second, we have noticed that there are several
concepts that have an integratiblity of 3 or below. We do not



list them here for space constraints.
We select Person from the above list in order to inves-

tigate the effect of maps from our breadth analysis. We per-
form an experiment as follows:

We first query the knowledge base from the perspective of
each of the 10 ontologies that define the concept Person.
We now ask for all the instances of the concept Person.
The results vary from 4 to 1,163,628. We then map the
Person concept from all the ontologies to the Person
concept defined in the FOAF ontology. We now issue the
same query from the perspective of this map and we get
1,213,246 results. The results now encompass all the data
sources that commit to these 10 ontologies. Note: a pair
wise mapping would have taken 45 mapping axioms to es-
tablish this alignment instead of the 9 mapping axioms that
we used. More importantly due to this network effect of the
maps, by contributing just a single map, one will “automat-
ically” get the benefit of all the data that is available in the
network. Although in our experiment we have created this
“super map” manually, it is conceivable that this can be au-
tomated. The response time for this query is about a minute.
Although this is a very high number for an interactive sys-
tem, we note that it is unlikely a user will ask a query that has
such a low selectivity. In addition, our investigation suggests
that this number may be high due to inefficiency in handling
large result set found in the JDBC driver implementation we
used.

In addition to developing the breadth analysis based maps,
we also perform a depth analysis of some selected ontologies
and mapped their concepts and roles in complete details.

The table below describes the prefixes, abbreviations and
urls of the ontologies we use in our in depth map experiment.

Prefix Abb. url
foaf Of http://xmlns.com/foaf/0.1/
aktors Oa http://www.aktors.org/ontology/portal
hack Oh http://www.hackcraft.net/bookrdf/vocab/0 1/
swrc Os http://swrc.ontoware.org/ontology
dc Od http://purl.org/dc/elements/1.1/
Our experiment considers maps of 1,500 concepts that

span over 1,200 ontologies. As we have described through
out this section some of these maps have been created by
us specifically for this experiment. The rest of the maps are
from ontologies that define their concepts in terms of ontolo-
gies they extend.

We describe the ρ formulas (see definition 2) of the
queries below in FOL:
1.∃ X,Y,Z, Of :Person(X) ∧ Of :Document(Y) ∧

Of :maker(Z) ∧ Of :surname(X, ‘‘Williams’’)

2.∃ X, Od :Document(‘‘rdf-sparql-query’’) ∧
Of :isReferencedBy(‘‘rdf-sparql-query’’, X)

3.∃ X, Oa :Activity(X)

In the first query we show how maps can dramatically im-
prove retrieval in the Semantic Web. The query is about a list
of publications by a certain individual using the FOAF on-
tology. There are several other ontologies that define these
concepts and they have varying number of data that commit
to them. However, a query posed in terms of FOAF ontol-
ogy will miss the data that commits to the others. We can
however map several ontologies with a mapping ontology

and use that perspective to query the integrated view. We
have mapped the relevant vocabularies of the following on-
tologies:(described using Description Logic)
foaf:Person ≡ swrc:Person ≡ aktors:Person
swrc:Publication v foaf:Document
hack:Book v foaf:Document
aktors:Publication v foaf:Document
aktors:has-author v foaf:maker

In the second query, we show that our flexible mapping
framework can be used to add additional semantics to an
existing ontology. For example, Dublin core(Od) has two
RDF properties: isReferencedBy and references.
It is fairly obvious that they have an inverse relationship.
However, RDF does not allow us to express this. We can
create a map:
dc:references− ≡ dc:isRefenecedBy.

The third query demonstrates the fact that reasoning
across ontologies can discover implicit maps. In addition,
unlike the first two queries, this one has low selectivity since
it places no additional constraints on the individuals. In this
query, we ask for a list of activities in terms of Aktors ontol-
ogy. If our mapping ontology is as follows:
swrc:Project ≡ ∃ swrc:isAbout.swrc:ResearchArea

aktors:Activity ≡ ∃
aktors:addresses-generic-area-of-interest

.aktors:Generic-Area-Of-Interest

swrc:ResearchProject v aktors:Generic-Area-Of-Interest

swrc:isAbout v aktors:addresses-generic-area-of-interest

The reasoner will be able to infer swrc:Project to be a
sub class of aktors:Activity. As a result, our query
will return all the information about activities using aktors
ontology and projects using swrc ontology as well.

The table below summarizes the results of the queries. It
shows that by adding the mapping ontologies and using them
as query perspectives, we retrieve more results with a slight
increase in query time. Also, most of the queries were un-
der 1 second and the longest query was in 5 seconds in our
experiment. Considering the size and reasoning involved in
the system, we believe our approach is fairly scalable given
the number of maps used in the experiment.

Query Perspective # of Results time(ms)

formula

1 Os 7 3964
1 map of Of , Oh, Os, Oa 365 5132
2 Od 0 5
2 map on Od 7 22
3 Oa 196 10
3 map of Oa and Os 371 31

Related work
We claim that this is the first attempt to reason with the Se-
mantic Web as a whole. Here we use reasoning strictly as
a knowledge representation term. We should however note
that there are several projects that process the Semantic Web
in various other ways. For example, Swoogle is the largest
index of Semantic Web documents. However, Swoogle’s
query and retrieval mechanism is basically an IR system.
The mechanism relies on string match and relevancy com-
putation. This does not exploit the reasoning that can be



done over Semantic Web data.
Flink (Mika 2005) is a presentation of the scientific work

and social connectivity of Semantic Web researchers. This
interesting application uses FOAF to develop social maps.

The Carnot (Huhns et al. 1993) system is one the earliest
work that uses articulation (i.e. mapping) axioms to address
heterogeneity in enterprise integration. Carnot depends on
commonsense knowledge and is more of a centralized ap-
proach which is not a suitable model for the Web.

There are some on going efforts to bootstrap the Semantic
Web by providing ontologies and reusable knowledge bases.
TAP (Guha 2002) is an example of one such effort. They
provide a fairly comprehensive source of basic information
about popular entities, like music, authors, autos etc. They
do not replace the upper ontologies but complement them.
Their work can be seen as “grounding” of some fragment of
those upper ontologies with real world data.

The C-OWL work (Bouquet et al. 2003) proposed that
ontologies could be contextualized to represent local mod-
els from a view of a local domain. They suggested that each
ontology is an independent local model. If some other on-
tologies’ vocabularies need to be shared, some bridge rules
should be appended to the ontology which extends those vo-
cabularies. Compared to C-OWL, our perspective approach
also provides multiple models from different views without
modifying the current Semantic Web languages.

In the past few years there has been a growing interest
in the development of systems that will store and process
large amount of Semantic Web data. The general design ap-
proach of these systems is similar to ours, in the sense that
they all use some database systems to gain scalability while
supporting as much inference as possible by processing and
storing entailments. However, most of these systems em-
phasize RDF and RDF(S) data at the expense of OWL rea-
soning. The system that most resembles the capabilities of
DLDB is KAON2 (Hustadt, Motik, & Sattler 2004), which
uses a novel algorithm to reduce OWL DL into disjunctive
datalog programs.

Conclusion and future work
We present an integration framework for dealing with het-
erogeneity in the Semantic Web. The framework does not re-
quire any additional language primitives beyond OWL. We
present a mechanism to implement this framework. This on-
tology perspective mechanism gives the user the flexibility
to choose the type of integration (s)he desires (or believes
in). We have demonstrated that it is feasible to perform es-
sential OWL reasoning with very large (45M triples), au-
thentic Semantic Web data. Our system is optimized for
working with OWL instances. We put forward that scala-
bility is more critical in processing the data sources as op-
posed to ontologies, because data sources will substantially
outnumber the ontologies in the Semantic Web.

Although we believe our work is a first step in the right
direction, we have discovered many issues that remain un-
solved. First, although our system scales well to the cur-
rent size of the Semantic Web, it is still unknown if such
techniques will continue to scale well as the Semantic Web

grows. Second, although perspectives resolve some form
of inconsistencies; inconsistency between data sources that
commit to the same ontology still result in inconsistent per-
spectives. These are some interesting research questions that
we plan to explore and invite others to do the same.

Acknowledgment
This material is based upon work supported by the National
Science Foundation (NSF) under Grant No. IIS-0346963.
We sincerely thank Tim Finnin of UMBC for providing us
access to the Swoogle’s index of URLs.

References
Bouquet, P.; Giunchiglia, F.; van Harmelen, F.; Serafini, L.;
and Stuckenschmidt, H. 2003. C-OWL: Contextualizing
ontologies. In Proc. of the 2003 Int’l Semantic Web Conf.
(ISWC 2003), LNCS 2870, 164–179. Springer.
Ding, L.; Finin, T.; Joshi, A.; Peng, Y.; Pan, R.; and Reddi-
vari, P. 2005. Search on the semantic web. IEEE Computer
10(38):62–69.
Guha, R. 2002. Tap: Towards the semantic web.
Demo on World Wide Web 2002 Conference. At:
http://tap.stanford.edu/www2002.ppt.
Heflin, J., and Pan, Z. 2004. A model theoretic semantics
for ontology versioning. In Proc. of the 3rd International
Semantic Web Conference, 62–76.
Heflin, J. 2001. Towards the Semantic Web: Knowl-
edge Representation in a Dynamic, Distributed Environ-
ment. Ph.D. Dissertation, University of Maryland.
Huhns, M.; Jacobs, N.; Ksiezyk, T.; Shen, W. M.; Singh,
M.; and Canata, P. 1993. Enterprise information modeling
and model integration in carnot. In Proc. of the Interna-
tional Conference on Intelligent and Cooperative Informa-
tion Systems, 12–14.
Hustadt, U.; Motik, B.; and Sattler, U. 2004. Reducing
shiq description logic to disjunctive datalog programs. In
Proc. of the 9th International Conference on Knowledge
Representation and Reasoning, 152–162.
Maedche, A., and Staab, S. 2001. Learning ontologies for
the semantic web. IEEE Intelligent Systems 16(2):72 – 79.
Mika, P. 2005. Flink: Semantic web technology for the
extraction and analysis of social networks. Journal of Web
Semantics 3(2).
Noy, F., and Musen, A. 2002. Evaluating ontology-
mapping tools: Requirements and experience. In The Pro-
ceedings of OntoWeb-SIG3 Workshop at the 13th Interna-
tional Conference on Knowledge Engineering and Knowl-
edge Management.
Pan, Z., and Heflin, J. 2003. DLDB: Extending relational
databases to support semantic web queries. In Proc. of
the Workshop on Practical and Scaleable Semantic Web
Systms, ISWC, 109–113.
Theoharis, Y.; Christophides, V.; and Karvounarakis, G.
2005. Benchmarking database representations of rdf/s
stores. In Proc. of the 4th International Semantic Web Con-
ference, 685–701.


