
Infrastructure for Efficient Exploration of Large
Scale Linked Data via Contextual Tag Clouds

Technical Report LU-CSE-13-002

Xingjian Zhang, Dezhao Song, Sambhawa Priya, and Jeff Heflin

Dept. of Computer Science and Engineering, Lehigh University
19 Memorial Drive West, Bethlehem, PA 18015, USA

{xiz307,des308,sps210,jeh3}@lehigh.edu

Abstract. In this paper we present the infrastructure of the contextual
tag cloud system which can execute large volumes of queries about the
number of instances that use particular ontological terms. The contex-
tual tag cloud system is a novel application that helps users explore a
large scale RDF dataset: the tags are ontological terms (classes and prop-
erties), the context is a set of tags that defines a subset of instances, and
the font sizes reflect the number of instances that use each tag. It visual-
izes the patterns of instances specified by the context a user constructs.
Given a request with a specific context, the system needs to quickly find
what other tags the instances in the context use, and how many instances
in the context use each tag. The key question we answer in this paper
is how to scale to Linked Data; in particular we use a dataset with 1.4
billion triples and over 380,000 tags. This is complicated by the fact that
the calculation should, when directed by the user, consider the entail-
ment of taxonomic and/or domain/range axioms in the ontology. We
combine a scalable preprocessing approach with a specially-constructed
inverted index and use three approaches to prune unnecessary counts for
faster intersection computations. We compare our system with a state-
of-the-art triple store, examine how pruning rules interact with inference
and analyze our design choices.

Keywords: Linked Data; Tag Cloud; Semantic Data Exploration; Scal-
ability

1 Introduction

We present the contextual tag cloud system1 as an attempt to address the fol-
lowing questions: How can we help casual users explore the Linked Open Data
(LOD) cloud? Can we provide a more detailed summary of linkages beyond
the LOD cloud diagram2? Can we help data providers find potential errors or
missing links in a multi-source dataset of mixed quality? There are two aspects

1 Contextual Tag Cloud Browser. http://gimli.cse.lehigh.edu:8080/btc/
2 The Linking Open Data cloud diagram. http://lod-cloud.net/

2 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

of a dataset: the ontological terms (classes and properties) and the instances;
and correspondingly, there are two types of linkages: ontological alignment and
owl:sameAs links between instances. We allow the user to specify a context as
a combination of ontological terms, and then visualize the degree of overlap be-
tween this context and all other terms. The context can be thought of as a class
expression in description logic, but is significantly simplified for usability rea-
sons. The overlap is the intersection of the context class and any other term. An
appropriate visualization of these counts can reflect the patterns of co-occurrence
of ontological terms as used in the instance data.

We build on the idea of a contextualized tag cloud system. In analogy to tra-
ditional Web 2.0 tag cloud systems, an instance is like a web document or photo,
but is “tagged” with formal ontological classes, as opposed to folksonomies. Thus,
we simply use “tags” as another name for the categories of instances. We extend
the expressiveness and treat classes, properties and inverse properties as tags
that are assigned to any instances using these ontological terms in their triples.
The font sizes in the tag cloud reflect the number of matching instances for each
tag. To explore the data, users can select a set of tags to form a context and the
displayed tags are resized to indicate intersection with this context. Note, this
system is neither an information retrieval system nor a SPARQL query engine,
instead it is designed for exploration and pattern discovery.

With any uncurated dataset, one must maintain a healthy skepticism towards
all axioms. Although materialization can lead to many interesting facts, a single
erroneous axiom could generate thousands of errors. Rather than attempting
to guess which axioms are worthwhile, our system supports multiple levels of
inference; and at any time a user can view tag clouds with the same context
under different entailment regimes, which helps users understand the dataset
better and helps data providers investigate the errors in the dataset.

These simple but powerful interface concepts propelled the Contextual Tag
Cloud Browser to win the Billion Triples Track of the 2012 Semantic Web Chal-
lenge3. Our initial version of the system [17] was used on DBPedia data [3].
For the Semantic Web Challenge, we added features and loaded the entire 2012
BTC dataset. This complex dataset contains 1.4 billion triples, from which we
extract 198.6M unique instances, and assign more than 380K tags to these in-
stances. This multi-source, large-scale dataset brings us challenges in achieving
acceptable performance and user-interface design. Although we believe the user
interface provides a convenient tool for exploring a Linked Data dataset, the
focus of this paper is presenting novel approaches for efficient and scalable com-
putation over noisy data with tremendous diversity.

The contributions of this paper are: (1) We propose using an inverted index to
speed up a special kind of query, namely querying the intersection of generalized
classes, and propose a scalable approach to preprocess it; (2) Some special cases
of these queries can be answered without accessing the index, we propose three
approaches to prune unnecessary queries and analyze alternative preprocessing
approaches; (3) We develop formula for supporting the first problems with multi-

3 SWC 2012 Winners. http://challenge.semanticweb.org/2012/winners.html

Infrastructure for Efficient Exploration via Contextual Tag Clouds 3

level inference and discuss our decision to materialize entailments and an efficient
mechanism to store the results of these entailments. Although this paper focuses
on a very specific application, we believe scalable computation of conditional
distributions can be applied to statistic based algorithms such as association rule
learning. The rest of the paper is organized as follows: we first briefly describe
the use cases of the tag cloud system and formally define the problem; then we
discuss the preprocessing and online computation and how we support multi-
level inference; after that we provide some experimental results of the system;
then we compare with related works; and lastly we conclude.

2 The Problem: Use Case and Formal Definition

Tag font sizes reflect

sizes of intersections.

Users can construct a context by

clicking on tags or removing them

Tags of an instance can vary

under different inference rules

Fig. 1. Property Tag Cloud with context foaf:Group and ∼schema:MusicGroup.

Initially, the system shows a tag cloud with no context tags selected, and
the tags in the cloud reflect the number of instances related to each tag. If
a tag is clicked, it will be added to the current context, and then a new tag
cloud will be shown for the updated context. A user can add/remove any tags
to/from the context, and explore any dynamically defined types of instances
specified by the context. Then in the resulting tag cloud, the font size for each
tag reflects the number of instances possessing the tag within the type specified
by the contexts. Mathematically, this contextual tag cloud actually reveals the
conditional distribution of the data: the probability that an instance has a
tag given that it is an instance of the user-defined type. For example in Fig. 1,
the property tag cloud shows us the degree to which instances of foaf:Group
that are not in schema:MusicGroup are used with specific properties.

4 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

This kind of pattern visualization helps users learn about the dataset for
different purposes. For example, large tags indicate frequent co-occurrence and
can be used to form a SPARQL query spanning diverse, multiple, linked data
sources that is most likely to return results; by focusing on the smaller tags, users
can investigate rare combinations, and by drilling into the data determine if these
are unusual facts or the product of data errors, such as incorrect owl:sameAs

links. Additionally the user can dynamically change which entailment regime
will be used to generate the tag cloud, thereby getting a big picture view of
the impact of entailment on the data. This feature can be used to track down
schema errors such as incorrect rdfs:domain statements.

An important aspect of the user interface is responsiveness. Ideally, each new
tag cloud should be generated in under one second, or users will quickly doubt the
system and/or become bored. Achieving this goal is particularly challenging since
the dataset contains billions of triples with hundreds of thousands of ontological
tags. In addition to an interface design that ensures the user is presented with
partial results as quickly as possible, we carefully designed an infrastructure that
is optimized for our unique form of queries. Before we describe our approach, we
now formalize the computation problem.

Formally, consider a KB defined by S, a set of RDF statements. Each state-
ment s ∈ S can be represented as a triple of subject, predicate and object, i.e.
s = ⟨sub, pre, obj⟩. In addition to these explicit triples, an entailment regime R
defines what kind of entailment rules will be applied to the triples. By applying
all the specified entailment rules, we can get SR, a closure of S which completes
S with the entailed statements. To extend the expressiveness, we include various
ways to assign a tag to an instance i:

1. Class C, if ∃⟨i, rdf:type, C⟩ ∈ SR, i.e. by entailment, i is an instance of C.
2. Property p, if ∃⟨i, p, j⟩ ∈ SR, i.e. the instance appears as the subject in

one or more triples involving p. Note it does not matter whether j is also
an instance or j is a literal value. Thus both owl:ObjectProperty and
owl:DatatypeProperty are valid.

3. Inverse Property p−, if ∃⟨j, p, i⟩ ∈ SR, i.e. if the instance appears as the
object in one or more triples involving p. Here the property p must be an
owl:ObjectProperty.

In addition, we find it useful in many scenarios to introduce the Negation
Tag ∼t. While a tag represents that an instance is described by a particular
class or property, we use a negated tag to indicate that such a description is
missing. This can be useful for inspecting what portions of the data are missing
important properties, e.g., how many politicians are missing a political party.
We considered three possible semantics for the negated tags:

1. classical negation: Instances have the tag only if the negation of the corre-
sponding concept is logically entailed;

2. negation-as-failure: Instances have this tag if the system fails to infer the
regular tag, i.e. it does not have the tag in SR; and

Infrastructure for Efficient Exploration via Contextual Tag Clouds 5

3. explicit negation: Instances have this tag if they do not explicitly have the
positive tag in S.

Since classical negation cannot be used to find missing properties and explicit
negation could lead to confusing scenarios where an instance has a regular in-
ferred tag and a corresponding explicit negation tag, we find negation-as-failure
best fits our requirement and argue that this is the correct semantics for a sys-
tem where what is not said is sometimes as important as what is said. Note that
the negation tags are virtually assigned to instances, since they can be easily
derived by whether their regular tags are assigned.

Let I be the set of all the instances, T be the set of all possible regular tags
assigned to instances in the dataset, and A be the union of T and their negation
tags. Given R, we define a function TagsR : I → 2T that returns all the regular
tags assigned to the given instance under R-inference closure. i.e.

TagsR(i) = {C|∃⟨i, rdf:typeC⟩ ∈ SR}
∪

{p|∃⟨i, p, j⟩ ∈ SR}
∪

{p−|∃⟨j, p, i⟩ ∈ SR}
(1)

Note under monotonic logic, R1 ⊆ R2 ⇒ TagsR1
(i) ⊆ TagsR2

(i), i.e. if more
entailment rules are applied, we will have at least the same set of tags assigned
to an instance, if not any more.

The function InstR : 2A → 2I returns the set of all instances assigned the
given set of regular or virtually assigned the given negation tags. Let A = T ∪V ,
where T ⊆ T is the regular tag set and V is the set of negation tags (the virtual
ones),

InstR(A) = {i|T ⊆ TagsR(i)∧ ̸ ∃t ∈ TagsR(i) s.t. ∼t ∈ V } (2)

For convenience, we define the frequency of a set of tags A ⊆ A as

fR(A) = |InstR(A)| (3)

When the user specifies a context A ⊆ A, he actually constructs a class
expression in description logic, but in significantly simplified way of interaction.
Then the context defines a narrowed scope of instances to be further investigated
and the next tag cloud is presented within this dynamically specified scope of
instances.

Note that for all the definitions above, the entailment regime R is also a
variable to the functions. To investigate the impact of different R, we can gen-
eralize various entailment rules into tag subsumptions. Tag t1 is a sub tag of tag
t2 if and only if the entailment regime requires InstR({t1}) ⊆ InstR({t2}). This
sub tag relation includes RDF subclasses/subproperties plus the ones entailed
by the domain/range axioms: If ⟨p, rdfs:domain, C⟩ and ⟨p, rdfs:range, D⟩,
then p is a sub tag of C and p− is a sub tag of D. We use the notation a1 ⊒R a2
or a1 ⊑R a2 for a1, a2 ∈ A to denote that a1 is a super/sub tag of a2 under
entailment regime R respectively.

Since our goal is to display the frequency of all tags given a context A ⊆ A,
our main challenge is to compute fR({t}∪A) for ∀t ∈ T efficiently. There are two
ways to approach this problem: (1) ensure efficient calculation of fR(A) for any

6 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

A ⊆ A; and (2) prune unnecessary calls of fR({t}∪A). To achieve this, we need to
correctly structure the repository and develop an efficient preprocessing step. In
the following section we will solve these problems for the situation where there is
only a single set of inference rules R. Then we will discuss how to “infer” relations
between tags and instances, and how to determine co-occurrence between tags
under tag inference.

3 Preprocessing

Our previous experiments [17] showed that an RDBMS with decomposed storage
model [1, 11] is not as efficient as using an Information Retrieval (IR) style index
for this specific application purpose, both in terms of load time (8X slower)
and online query time (18X slower). Therefore we extend our IR approach, but
meanwhile add more steps to deal with the BTC dataset.

Our preprocessing is shown in Figure 2, where the dashed boxes are input or
intermediate data and the solid ones are data results for the online system, and
the detailed steps are as follows.

Raw

Data

Ontology

sameAs

Axioms

Instance

Triples

Replaced Flipped

Instance Triples

(in n Files)

Sorted R&F

Instance Triples

[Multi-Inference]

Inference Closure

[Multi-Inference]

Instance Index

[No-Inference] Tag

Co- Occurrence

Fig. 2. Preprocessing for the tag cloud system

1. Split the Triples. The raw triple files are parsed and split into three triple
files (one triple per line): the ontology file which includes specific properties
(e.g., rdfs:subClassOf) or classes (e.g., owl:Class), the owl:sameAs (in-
stance equivalence statements) file, and the file of remaining instance triples.
Note in different scenarios, this step can be simplified or complicated. This
step can be skipped if the ontology and sameAs files are provided separately.
However, if any possible sub property of owl:sameAs under the given entail-
ment might exists, the extraction of sameAs axioms should be postponed
after the closure of the ontological axioms (i.e. the next step) has been com-
puted.

2. Inference Closure. The ontology is processed into a closure set of sub-
tag axioms for the given entailment regime (or regimes); As the result of
this process, the closure is then responsible for two functions: subR(a) and
superR(a) which respectively return the sets of sub/super tags of tag a ∈ A
under inference R. Notably, although the functions can take either a regular
or a negation tag as input, in implementation, we only need to record the

Infrastructure for Efficient Exploration via Contextual Tag Clouds 7

values for input t ∈ T except the inverse properties, since for an inverse
property p−,

subR(p−) = {p′ − |p′ ∈ subR(p)} (4)

superR(p−) = {p′ − |p′ ∈ superR(p)} (5)

Also the results for the negation tags can be computed because t1 ⊑R t2 ⇔
∼t1 ⊒R ∼t2. Given t ∈ T ,

subR(∼t) = {∼t′|t′ ∈ superR(t)} (6)

superR(∼t) = {∼t′|t′ ∈ subR(t)} (7)

3. Replace, Flip, and Split the Instance Triples. We use the well-known
union-find algorithm to compute the closure for owl:sameAs statements, and
pick a canonical id for each owl:sameAs cluster. Then for the instance triples,
we replace each instance with its owl:sameAs canonical id (if any). If the
object of the triple is also an instance, we flip the triple and add it to the
intermediate file, i.e., if the triple is ⟨i, p, j⟩, the flipped one is ⟨j, p−, i⟩. By
this means, we can find all the regular tags (particularly inverse property
tags) of an instance i by simply looking at the triples with i as a subject.
Note by duplicating the object property statements, the output can have up
to twice as the original triple size. In order to index an instance, we need to
first group all of its triples together. To do this, we first output the triples
into n files based on the hashcode of their subjects, so that we keep the
information of an instance in the same file while making each file relatively
small.

4. Sort the n Triple Files. We use merge sort on each “replaced and flipped”
file generated from the last step, so that triples with the same subject in-
stance are clustered together. Note that by splitting the triples into n files,
we gain benefits from two sides: (1) sorting each file becomes faster (and
since we only need to group triples with the same subject, we do not need
to merge the sorted files); (2) we can sort in parallel (either with multiple
machines or with multiple threads). We use these sorted files together with
the given inference closure to build an inverted index of the instances.

5. Index the Sorted Files. The inverted index is built with tags as indexing
terms and each tag has a sorted posting list of instances with that tag.
This means given a “type” defined by a set of tags we can quickly find
all the instances by doing an intersection over the posting lists. Also, since
we use negation as failure, we do not need to index negation tags; their
size can be calculated from its complementary tag. i.e. fR({∼t} ∪ A) =
fR(A) − fR({t} ∪ A). Given a type defined by context A ∈ A, which can
be represented as {t1, t2, . . . , tn,∼s1,∼s2, . . . ,∼sm}, the instances defined by
this context can be retrieved by a boolean IR query:

t1 AND t2 AND . . . AND tn AND NOT s1 AND NOT s2 AND NOT . . . AND NOT sm

At the time of indexing each instance, we materialize all the tags that are
entailed based on our previously computed entailment closure. Note that

8 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

for different entailment regimes, we have different set of posting lists, which
increases the disk space. However, we will justify this choice in Section 5.
Meanwhile we add other fields such as labels of instances, sameAs sets, file
pointers to the raw file, etc. to facilitate other features in our tag cloud
system.

6. Compute Co-occurrence Matrix. To help prune unnecessary tags when
computing the conditional distribution of tags under any given context T ,
we precompute the Co-occurrence Matrix for all the tags. Define MR as
a |T |× |T | symmetric boolean matrix, where MR(x, y) denotes whether tags
tx and ty co-occur, i.e. MR(x, y) = (fR({tx, ty}) > 0). We will discuss differ-
ent approaches for computing this matrix next, then introduce the pruning
benefit from this matrix in Section 4, and later discuss how to efficiently
compute this matrix for different entailment regimes in Section 5.

There are three ways to generate MR.

1. Traverse all the instances. For each instance i ∈ I, we get all of its tags
TagsR(i), for any pair of tags (tx, ty) ∈ TagsR(i)× TagsR(i), set MR(x, y).

2. Traverse pairs of tags. For any pair of tags (ta, tb) ∈ T ×T , if fR({ta, tb}) >
0, set MR(x, y).

3. Traverse tag instances. For each tag tx ∈ T , we get all of its instances
InstR({tx}), and then set occurrences for all tags in them. For i ∈ InstR(tx),
for any tag ty ∈ TagsR(i), set MR(x, y).

We can roughly estimate the execution time of each method from how much
index access (the functions TagsR, fR, and InstR) is needed. Assume on average
a tag has d instances and an instance has e tags. The cost of InstR({tx, ty}) (or
fR({tx, ty})) is estimated as c1d, because the intersection needs to simultaneously
walk through both sorted posting lists. The cost of TagsR(i) is estimated as
c2e. Here, c1, c2 are constants given the dataset and the environment. Roughly
speaking, the first method has |I| iterations and takes |I|c2e; the second has
|T |2/2 iterations and takes c1d|T |2/2; and the third has d|T | iterations and
takes c2ed|T |.

There is one problem with the estimations above: we ignored the cost of
setting M . For the second and the third approach, they both only need to set
each MR(x, y) once; the first approach however can repeatedly set the same cell.
What is even worse, for a large scale dataset, we might be unable to have the
full matrix in memory, and thus updating random cells becomes more costly. In
contrast, the third approach calculates cells row by row, and both the second
and the third approach can stream out the results since each cell is set at most
once. When choosing between the second and the third approach, we pick the

third one if the ratio r = c1d|T |2/2
c2ed|T | = c1|T |

2c2e
> 1. Note both c1 and c2 can be easily

estimated by experiment, and c2 is usually one to two orders of magnitude larger
than c1. In general, if the size of all the tags is small enough to hold the full
matrix in memory, then use the first approach; otherwise, if we find in the dataset
that each instance usually uses a very small portion of all the tags (e.g. less than

Infrastructure for Efficient Exploration via Contextual Tag Clouds 9

1%), the third approach is preferred than the second. In a multi-source cross-
domain dataset such as the BTC dataset, instances usually have very few tags
from other domains, e.g. a musician instance will seldom use tags from domains
like e-Government or life sciences; thus we use third approach.

This matrix provides a function for each tag tx to return all the tags that
co-occur with it in at least one instance. i.e. COR(tx) = {ty|MR(x, y) = 1}. We
shall discuss the significance of this function next.

4 Online Computation

Given a context A ∈ A and entailment regime R, the online computation will
return all the fR({t} ∪ A) for every tag t ∈ T . With our index, we can simply
issue an IR query for each t that counts all the instances with all tags in A and
t, which is getting the number of total hits for a boolean AND query (or AND

NOT for negation tags). Note that the underlying system compares the posting
lists of all tags in the query, and because A is the common part among this
series of queries, the intersected posting list can be shared among queries. Thus
increasing |A|, i.e., the number of tags in the context, may simplify the queries
by generating a shorter posting list for A. A quality IR system can answer a
count query within a few milliseconds, but since we have hundreds of thousands
of tags, we need to focus on how to reduce the number of queries.

There are two special cases of the fR results, which we want to know without
issuing fR queries:

1. Always-Occur i.e. fR({t} ∪ A) = fR(A). If t is a super tag of any tag in
A, adding t to T does not change the instance set and thus does not change
fR, i.e.

∀t′ ∈ A,∀t ⊒R t′, fR({t} ∪A) = fR(A) (8)

2. Never-Occur i.e. fR({t} ∪ A) = 0. If there is any negation tags in the
context A, there will be no instance in this context that is also assigned its
regular tag or any sub tag of this regular tag, i.e.

∀∼t′ ∈ A,∀t ⊑R t′, fR({t} ∪A) = 0 (9)

Ideally we want to skip every tag in both special cases. However, the above
rules are both entailed from axioms, and will only prune a small amount of the
tags. However in practice, there are many tags that never co-occur in the same
instance, even though there is no axioms stating this disjointness (in fact, this
might not be an axiom but just the coincidence of the dataset). Thus we find
more approaches to resolve this.

For convenience, we let T = A∩ T , i.e. all the regular tags in the context A.
Since we do not have any further optimization for the negation tags in A, in the
following discussion of pruning algorithms, we only deal with the context input
T ∈ T .We define ZR(T) = {z|fR({z}∪ T) = 0}. Let CL be the candidate list of
regular tags whose queries are finally issued. We propose three different pruning
approaches to make CL as short as possible.

10 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

1. Use the Co-occurrence Matrix (M). Given T ,
∩

t′∈T COR(t
′) has (and

not necessarily only has) all the tags {t|fR({t} ∪ T) > 0}. When |T | = 1, it
returns only the co-occurring tags and prunes all the ZR(T). When |T | > 1,
it returns a super set of the co-occurred tags, because the returned tags are
only known to pairwise co-occur with any tag in T , but are not guaranteed
to co-occur with all tags in T in the same instance.

2. Use the previous tag cloud cache (C). Since InstR({t}∪T) ⊆ InstR(T),
the set of co-occurred tags given context {t}∪T is also a subset of that given
T . Thus if we cache the previous tag cloud, which has the same context T
except for the most recently added tag, we can get another super set of
the co-occurred tags for context T . This relies on the tag cloud application
scenario: it is very likely that the current request is from a user adding a new
tag to the context. However we believe it can be applied to any scenarios
involving a depth-first search of the context space.

3. Dynamic update (D). When computing fR({t}∪T) for all the candidate
tags from the above two approaches, if we find fR({tx} ∪ T) = 0, we know
∀ty ∈ subR(tx), ty ∈ ZR(T), and these tags will be ignored in further compu-
tation. This approach can be optimized if we sort the list of tags such that
sub tags always follow super tags. However, our tag cloud system does not
use this optimization because it needs to stream results alphabetically.

� � ��� � ∪ ��	� � ��� � ∪ ��	�	 � 	0?

�� � simplify�	��	�� � simplify�	��	

��, �	

ResultSet	

Add ��, �	 to

ResultSet	

� ←� ← pop next tag in CL �� ← ��� ∩ ����� ← ��� ∩ ���

�� � ∅?

 !"#�	context	�,	
Inference	*

 !"#�	context	�,	
Inference	*

Y
N

Y

N

��� ← CacheCandidate�*, �	��� ← CacheCandidate�*, �	 C

��� ←∩/0∈20 CO� 	���	��� ←∩/0∈20 CO� 	���	 M

�� ← �� 4 sub�	��	�� ← �� 4 sub�	��	 D

67�#6!	
ResultSet
67�#6!	
ResultSet

Cached? Y

N

ResultSet	

��’, *	

Cache ResultSet	

with key ��’, *	

Fig. 3. Pruning for Online Computation

The online computation works as shown in Fig. 3, where the pruning steps
are marked with red circles. First, the input context T will be simplified (under
R-Inference) to its semantic-equivalent T ′ so that any redundant tags will be
removed (e.g., if T = {t1, t2} and t1 is a super tag of t2 then T ′ = {t2}) and any
equivalent tag will be changed deterministically to a representative tag. Then
the system checks whether this semantic-equivalent request has been kept in
cache for direct output. If not, the system will get candidate lists CLM from the
first approach using T ′ and CLC from the second approach using T . Then we
use the intersection CL = CLM ∩CLC as the candidate list for queries and keep
updating it using the third approach. It is easy to prove that using simplified T ′ in
the first approach will get the same candidate tags as using T . Given T = {t1, t2}

Infrastructure for Efficient Exploration via Contextual Tag Clouds 11

where t1 is a super tag of t2, we can see COR(t1) ∩ COR(t2) = COR(t2) since
COR(t1) ⊇ COR(t2). However by removing super tags, we can avoid unnecessary
intersection of lists when computing the candidates. On the other hand, the cache
approach needs the original T in order to get the previous context; subsequently,
this previous context is simplified for cache lookup.

5 Supporting Different Entailment Regimes

In our implementation, we have two specific sets of rules: RSub for sub/equivalent
class/property entailment (rdfs5, rdfs7, rdfs9 and rdfs11 4); and RDR for
property domain/range entailment (rdfs2, rdfs3). We also support the com-
bination of these two sets, leading to four distinct entailment regimes R =
{∅, RSub, RDR, RSub ∪RDR}.

From the raw dataset, we get only Tags∅, the tags of each instance with no
inference applied. In order to implement TagsR, InstR and COR for different R,
we can either materialize them so that they serve as independent repositories; or
we can always do the inference on-the-fly. We first discuss how to represent the
three functions under R by combining the R = ∅ versions (i.e., with no inference)
with the tag subsumption functions superR and subR. After that we will discuss
the design choice regarding materialization.

By adding inference, an instance will be assigned with the super tags of its
explicit tags, and a tag will be assigned to all instances of its sub tags. i.e.

TagsR(i) =
∪

t′∈Tags∅(i)

superR(t
′) (10)

InstR(A) =
∩

t∈T ∩A

∪
t′∈subR(t)

Inst∅(t
′)−

∪
a∈A−T

∪
a′∈subR(a)

Inst∅(∼a
′) (11)

Note that the input of InstR can be a set that contains negation tags, and the
result should exclude the instances that contain any sub tags of the regular tag
(∼a′ is the regular tag of the negation tag a′).

From Eq. (10), we know that

t ∈ TagsR(i) ⇔ ∃t′ ∈ subR(t), t
′ ∈ Tags∅(i) (12)

If tag s co-occurs with tag t under R,

s ∈ COR(t) ⇔ ∃i ∈ I, s ∈ TagsR(i) ∧ t ∈ TagsR(i)

⇔ ∃i ∈ I, ∃sx ∈ subR(s),∃ty ∈ subR(t), sx ∈ Tags∅(i) ∧ ty ∈ Tags∅(i)

⇔ ∃sx ∈ subR(s),∃ty ∈ subR(t), sx ∈ CO∅(ty) (13)

For convenience, we define

super∪R(T) =
∪
t′∈T

superR(t
′) = {t|∃t′ ∈ T, t ∈ superR(t

′)} (14)

4 RDFS Entailment Rules: http://www.w3.org/TR/rdf-mt/#RDFSRules

12 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

And similarly,

CO∪
R(T) =

∪
t′∈T

COR(t
′) = {t|∃t′ ∈ T, t ∈ COR(t

′)} (15)

Then we compute COR(t) from Eq. (13).

COR(t) = {s|∃sx ∈ subR(s), ∃ty ∈ subR(t), sx ∈ CO∅(ty)}
= {s|∃ty ∈ subR(t),∃sx ∈ CO∅(ty), s ∈ superR(sx)}
= super∪R({sx|∃ty ∈ subR(t), sx ∈ CO∅(ty)})
= super∪R(CO

∪
∅ (subR(t))) (16)

In our implementation, as shown in Fig. 2, we materialize TagsR for all 4 en-
tailment regimes, thus we do not need to compute Eq. (11) for online computa-
tion. However we only precompute CO∅ and use Eq. (16) at online computation.
We made our design choices based on two reasons. First, How much slower will
it be if not materialized? Both Eq. (11) and (16) include union and intersection
of sets or posting lists, however the lists of instances are usually much larger
and using Eq. (11) significantly increases the execution time compared to the
materialized index. Second, How important is the runtime performance? As in
our scenario, for each tag cloud (or conditional distribution) given T , COR is
only called once, however InstR is called for each tag from the candidate set.

Also note Eq. (16) can be used for either online computation of COR or
precomputation if it is materialized. Building the co-occurrence matrix MR is a
time consuming step (see Fig. 4). We should avoid repeating it four times for
four inference regimes. Instead, we only need to build M∅, which is the easiest
because each instance has the minimal number of tags, and the co-occurrence
for all the other inference regimes can be computed based on Eq. (16).

6 Experiments

Our system is implemented in Java and we conducted all experiments on a
RedHat machine with a 12-core Intel 2.8 GHz processor and 40 GB memory.

In order to test the performance of our preprocessing approach, we apply
it to all five subsets of the BTC 2012 dataset, as well as the full dataset. The
statistics are listed in Table 1.

Fig. 4 illustrates how long each step of preprocessing takes for each subset.
The Multi-Inference step is not included in the figure since it is too short (41s
for the full set) compared with other steps. In general the sorting step and the
steps that involve a full scan of the dataset, such as Replace/Flip and index,
are the most substantial. Each step is related to certain factors of the dataset
provided in Table 1. E.g. the time for inference is related to the number of tag
subsumption axioms, which is correlated with the number of ontology triples; the
time for union-find on sameAs is related to the number of SameAs triples; and
most of the other steps are related to the number of instance triples. Despite the

Infrastructure for Efficient Exploration via Contextual Tag Clouds 13

Table 1. Statistics of Triples in the subsets of BTC 2012 dataset

Set Name Total Ontology Triples SameAs Triples Instance Triples

rest 22 M 54.7 K 734 K ∼22 M

freebase 101 M 0 897 K 92 M

dbpedia 198 M 1.8 K 22,818 K 175 M

timbl 205 M 1,260.1 K 340 K 203 M

datahub 910 M 466.0 K 4,490 K 905 M

full set 1,437 M 1,782.6 K 37,357 K 1,397 M

differences in the portions of different kinds of triples, we also plot the time/space
for datasets against their numbers of total triples in Fig. 5, which shows the
scalability of our preprocessing approach. The reported disk space includes both
the index and the no-inference co-occurrence matrix (M∅), and is dominated by
the index, which usually takes > 90%. We can see the time is quite linear with
the total number of triples, because most of the major steps are linear w.r.t.
the number of triples. The space however is slightly less correlated to the total
number of triples, since many different triples might only contribute to a single
tag in the index. For example, there might be 1000 triples saying a foaf:Person
foaf:knows 1000 different people, however these triples only contribute a single
property tag to this person. This is exactly what happens in the timbl subset,
and explains why we see timbl has slightly more triples than dbpedia but needs
less time/space.

0 5000 10000 15000 20000 25000 30000 35000 40000

rest

freebase

timbl

dbpedia

datahub

full set

time (s)

1. Split 2. SameAs

3. Replace/Flip 4. sort

5. index 6. co-occur

Fig. 4. Time for steps of preprocessing various datasets

We then test the response time of fR({t} ∪ T) queries, i.e. how long it takes
to count the instances of tag t with context T by querying the index. To ensure
a random but meaningful context T , i.e. InstR(T) ̸= ∅, we randomly pick an
instance i and get a subset (size of 6) from its tags Tags∅(i) as [ti,1, ti,2, . . . , ti,6].
Thus the six tags in this array are known to co-occur under all entailment
regimes. We generate 100 such arrays using different i. Additionally, we pick
a set S of 10000 random tags. Starting from5 k = 1 . . . 6, we use the first k tags
in the arrays as contexts T , and we measure the average time of fR({s} ∪ T)
for all s ∈ S. While S might overlap with some T , it does not impact the

5 The initial tag cloud (|T |=0) is precomputed and cached, thus we do not test it here.

14 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

0

20

40

60

80

100

120

-2

0

2

4

6

8

10

12

0 500 1000

D
is

k
 S

p
a

ce
 (

G
B

)

To
ta

l
P

re
p

ro
ce

ss
 T

im
e

 (
h

o
u

r)

Total Number of Triples (million)

time

space

rest

freebase

timbl

dbpedia

datahub

full set

Fig. 5. Preprocessing: Time/Space - Total Triples

query time since we issued the same fR queries without removing redundant
query terms. By doing this, we can compare the average query time for different
contexts T because they are intersected with the same tags; and we can com-
pare the difference when adding more tags to contexts because as k increases,
each array will provide a more “strict” context then before. We also change
R = ∅, RSub, RDR, RSub∪RDR to examine the impact of different inference. The
average time per 10K queries grouped by |T | is shown in Fig. 6. In average,
it takes 0.6∼0.7 milliseconds for a single fR query. The time slightly increases
(sub-linear) when we add more tags to context. It takes longer if R has more
inference rules due to longer posting lists of tags in the index. As we expect,
since there are fewer tags added to each instance from domain/range inference,
we find the curves for RDR and ∅ are close, while RSub and RSub ∪ RDR are
nearly identical.

5500

5700

5900

6100

6300

6500

6700

6900

7100

7300

7500

0 1 2 3 4 5 6

ti
m

e
 (

m
s)

|T|

No Inference (∅)

Sub Class/Property(RSub)

Domain/Range(RDR)

Both Inference(RSub ∪ RDR)

No Inference (∅)

Sub Class/Property(RSub)

Domain/Range(RDR)

Both Inference(RSub ∪ RDR)

Fig. 6. Average time for 10K queries as context T grows for each entailment regime.

A reasonable question is whether a high-performance triple store could be
used as a backend for our system. To answer this question, we compare the
response time of this specific kind of queries with RDF-3X [10] a state-of-the-
art SPARQL engine that “outperforms its previously best systems by a large

Infrastructure for Efficient Exploration via Contextual Tag Clouds 15

margin”. It takes 9 hours and 11 minutes to load the full BTC dataset into
RDF-3X. Note that this loading does not include any kind of inference, sameAs
closure/replacement, nor co-occurrence computation as we do in our prepro-
cessing. Similar to the previous experiment, for context size |T | = 1, . . . , 5, we
randomly pick 50 (10 of each) contexts, and this time we measure how long it
takes for both systems to compute the full contextual tag cloud without pruning.
i.e. for a given T , we compute f∅({t} ∪ T) for ∀t ∈ T . We use R = ∅ because
RDF-3X does not explicitly do any inference. The comparison results are shown
in Table 2. In addition to the average execution time of both systems, we also
list the Average/Maximum/Minimum Differences, which shows how much faster
our system is compared to RDF-3X, with respect to an average query, its best
query and its worst query. Note, the times in this table are longer than those in
Fig. 6, because we are issuing ∼380K queries as opposed to 10K. It is clear that
our system always outperforms RDF-3X. Averaging across all queries in our test
set, our system is 10 times faster than RDF-3X. The differences are more pro-
nounced when |T | increases, although both systems have a sub-linear increase
in query execution time as |T | increases. There are two outliers of the Max/Min
trends. When |T | = 1, the Max Diff. occurs when f∅(T) = 49, 584, 018, which is
the largest set of instances specified by the context in our test set. When |T | = 5,
the Min Diff. occurs when f∅(T) = 143, which is the smallest set of instances
specified by the context in our test set. It is possible that the smaller sizes of
instances specified by the context lead to more efficient joins in RDF-3X, allow-
ing it to approach our system’s performance. The key point to recognize here
is that one-size-fits-all triple stores are not always the best solution for scalable
applications. By choosing a carefully constrained user interaction method, we
are able to design a specialized infrastructure that can meet our performance
requirements. That said, we posit that the systems capable of performing volu-
minous tag intersections can be used not just for supporting user interfaces, but
for data mining and anomaly detection as well.

Table 2. Comparison on Time Cost for Computing Full Tag Cloud (No Pruning)

|T | Avg. Time Ours Avg. Time RDF-3X Avg. Diff. Max Diff. Min Diff.

1 65.8 s 887.6 s 13.5 X 93.2 X 1.71 X

2 84.9 s 516.7 s 6.09 X 15.6 X 2.87 X

3 90.7 s 721.2 s 7.95 X 20.6 X 4.56 X

4 92.8 s 1030.8 s 11.1 X 30.8 X 6.24 X

5 110.3 s 1359.7 s 12.3 X 33.4 X 4.44 X

All 88.9 s 903.2 s 10.2 X 93.2 X 1.71 X

We also test how well our system does for pruning candidate tags under
the most complex inference R = RSub ∪ RDR. Using the approach above, we
generate 100 arrays of length 6 from TagsR(i), by changing the length of sub
arrays we get 600 random T . As we discussed in the previous section, there are
three approaches: by co-occurrence matrix (M), by previous cache (C), or by

16 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

dynamic update (D). By each combination of approaches, we can count how
many fR queries are finally issued, and see how many queries are pruned. Note
there is always some pruning due to super tags of tags in contexts. When using
approach C, we always assume the previous cache is available.

|T| =389194

0

50000

100000

150000

200000

250000

300000

350000

400000

0 1 2 3 4 5 6

A
v

e
ra

g
e

 N
u

m
b

e
r

o
f

P
ru

n
e

d

Ta
g

s

|T|

D

C

CD

M

|T||T||T||T|

Fig. 7. Average Number of Pruned Tags

The average number of pruned tags is shown in Fig. 7. There are |T | =389K
tags in total however most tags only co-occur with a few other tags. Pruning
usually saves us unnecessary queries. We can see when |T | increases any ap-
proach will generally prune more tags because more tags in T means a more
constrained context. Among the three approaches, M in average prunes more
tags, and enabling the other two approaches with M only provides less than 1%
more pruning (thus we do not show the overlapping curves for combinations MC,
MD and MCD). This justifies the preprocessing for the co-occurrence matrix. C
also has good pruning except that when |T | = 1, the cache of |T | = 0 is a list
of every tag and C will not help. However, in the tag cloud scenarios, |T | = 1 is
important as it will decide the response after the user’s first click. Also in prac-
tice, the history cache might not always be available (e.g. a user adds t1, t2, t3
and then removes t2). So its availability is a concern although it requires no
preprocessing. The time cost for COR is not a key concern to our system. The
average time for the above test set is 1.1s with all approaches enabled. However
running this pruning saves ∼300K fR queries or in average 0.6ms×300K = 180s
for each tag cloud. For the above 600 T , we have an average time of 8.8s per
tag cloud, with max of 48.8s. Thanks to the paging and streaming features in
our interface design, the first 200 tags in the tag cloud page almost always show
within 2 seconds, which we consider an acceptable responsiveness.

7 Related Work

To the best of our knowledge, we have not seen any other works like the con-
textual tag cloud system, nor papers focusing on optimization for the specific
kind of query and resolving related problems. To compare with general purpose
triple stores, Rohloff et al. [12] present a comparison of scalability performance

Infrastructure for Efficient Exploration via Contextual Tag Clouds 17

of various triple store technologies using the LUBM benchmark [8], and reported
that Sesame [4] was the most scalable: It loads around 850M triples in about
12 hours, but it takes more than 5 hours to answer LUBM Query 14, which,
similar to our task, requests the instances of a class. Sakr and Al-Naymat [13]
survey RDF data stores based on relational databases and classify them into
three categories: (1) each triple is stored directly in a three-column table, (2)
multiple properties are modeled as n-ary table columns for the same subject,
and (3) each property has a binary table. Abadi, et al. [2] explore the trade-off
and state the third category is superior to the others on queries. However our
previous experiments [17] show using an inverted index is much faster for the
queries that count instances of intersections of classes/properties. In this paper
we continue to compare our inverted index approach with the state-of-the-art
RDF store RDF-3X [10]. The difference in the experiments indicates that a gen-
eral purpose SPARQL engine is not always the right choice for a Semantic Web
system which requires scalable performance on special kinds of queries.

There are many applications using inverted indices on Semantic Web data.
Many of them are Semantic Web search engines. E.g. Sindice [14] and Watson
[6] are used to locate Semantic Web documents, while other search engines such
as Falcons [5], SIREn [7], and SemSearch [9] are used for locating Semantic
entities, and thus whether to index labels, URLs, literal values or other metadata
might differ between them. Occasionally, question answering systems [15, 16] use
inverted indices to help identify entities from natural language inputs, which
in some sense is also an entity search engine. Despite the categorization, all
the above systems index with keywords because the intended usage is to locate
relevant resources based on natural language queries posed by users. Our system
is very different because the “terms” in our index are no longer keywords but
ontological tags. As a result, our index is compatible with entailments sanctioned
by the ontologies in the data. This is also why we propose our preprocessing steps
prior to indexing, which we have not seen in other works.

8 Conclusion

The contextual tag cloud system is a novel tool that helps both casual users
and data providers explore the BTC 2012 dataset: by treating classes and prop-
erties as tags, we can visualize patterns of co-occurrence and get summaries of
the instance data. From the common patterns users can better understand the
distribution of data in the KB; and from the rare co-occurrences users can either
find interesting special facts or errors in the data.

In this paper we discuss the underlying computation problem for the contex-
tual tag cloud system. The main problem we solve is to efficiently compute the
conditional distribution of types with respect to the intersection of any num-
ber of other types. We use an inverted index for this specific kind of query and
propose a scalable preprocessing approach. We also propose pruning approaches
to save unnecessary queries. We develop formulas to calculate inference under

18 Xingjian Zhang, Dezhao Song, Sambhawa Priya, Jeff Heflin

different entailment regimes. Our experiments verify the scalability of both pre
and online computation as well as the effectiveness of our pruning approach.

Although the infrastructure described in this paper is specialized for the
contextual tag cloud, we believe this infrastructure can be generally applied to
other applications. For example, currently we present the visual patterns to users
and rely on human intelligence to recognize any common pattern or unlikely co-
occurrence. In the future, we will investigate automated algorithms to learn
association rules from or detect anomalies in the dataset.

Acknowledgment

This project was partially sponsored by the U.S. Army Research Office (W911NF-
11-C-0215). The content of the information does not necessarily reflect the po-
sition or the policy of the government, and no official endorsement should be
inferred.

References

1. Abadi, D.J., Marcus, A., Madden, S.R., Hollenbach, K.: Scalable Semantic Web
data management using vertical partitioning. In: VLDB. pp. 411–422 (2007)

2. Abadi, D., Marcus, A., Madden, S., Hollenbach, K.: SW-Store: a vertically par-
titioned DBMS for Semantic Web data management. The VLDB Journal 18(2),
385–406 (2009)

3. Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., Ives, Z.: DBpedia:
a nucleus for a web of open data. In: ISWC/ASWC. pp. 722–735 (2007)

4. Broekstra, J., Kampman, A., Van Harmelen, F.: Sesame: A generic architecture
for storing and querying RDF and RDF schema. In: ISWC. pp. 54–68 (2002)

5. Cheng, G., Ge, W., Qu, Y.: Falcons: searching and browsing entities on the Se-
mantic Web. In: WWW. pp. 1101–1102 (2008)

6. d’Aquin, M., Motta, E.: Watson, more than a Semantic Web search engine. Se-
mantic Web Journal 2(1), 55–63 (Jan 2011)

7. Delbru, R., Campinas, S., Tummarello, G.: Searching web data: an entity retrieval
and high-performance indexing model. Journal of Web Semantics 10(0) (2012)

8. Guo, Y., Pan, Z., Heflin, J.: LUBM: A benchmark for OWL knowledge base sys-
tems. Journal of Web Semantics 3(2), 158–182 (2005)

9. Lei, Y., Uren, V., Motta, E.: Semsearch: A search engine for the Semantic Web.
Managing Knowledge in a World of Networks pp. 238–245 (2006)

10. Neumann, T., Weikum, G.: The RDF-3X engine for scalable management of RDF
data. The VLDB Journal 19(1), 91–113 (2010)

11. Pan, Z., Heflin, J.: DLDB: Extending relational databases to support Semantic
Web queries. In: Workshop on Practical and Scaleable Semantic Web Systems. pp.
109–113 (2003)

12. Rohloff, K., Dean, M., Emmons, I., Ryder, D., Sumner, J.: An evaluation of triple-
store technologies for large data stores. In: On the Move to Meaningful Internet
Systems Workshop. pp. 1105–1114. Springer (2007)

13. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. ACM
SIGMOD Record 38(4), 23–28 (Jun 2010)

Infrastructure for Efficient Exploration via Contextual Tag Clouds 19

14. Tummarello, G., Delbru, R., Oren, E.: Sindice.com: Weaving the open linked data.
In: ISWC/ASWC, pp. 552–565 (2007)

15. Unger, C., Bühmann, L., Lehmann, J., Ngonga Ngomo, A.C., Gerber, D., Cimiano,
P.: Template-based question answering over RDF data. In: WWW. pp. 639–648
(2012)

16. Walter, S., Unger, C., Cimiano, P., Bär, D.: Evaluation of a layered approach to
question answering over linked data. In: ISWC, pp. 362–374 (2012)

17. Zhang, X., Heflin, J.: Using tag clouds to quickly discover patterns in linked data
sets. In: Workshop on Consuming Linked Data (2011)

