
A Multi-ontology Synthetic Benchmark for the
Semantic Web

Yingjie Li, Yang Yu and Jeff Heflin

Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308, yay208, heflin}@cse.lehigh.edu

Abstract. One important use case for the Semantic Web is the inte-
gration of data across many heterogeneous ontologies. However, most
Semantic Web Knowledge Bases are evaluated using the single ontology
benchmark such as LUBM and UOBM. Therefore, there is a require-
ment to develop a benchmark system that is able to evaluate not only
single but also federated ontology systems for different uses with differ-
ent configurations of ontologies. To support such a need, based on our
earlier work, we present a multi-ontology synthetic benchmark system
that takes a two-level profile as input to generate user-customized on-
tologies together with related mappings and data sources. Meanwhile, a
graph-based query generation algorithm and an owl:sameAs generation
mechanism are also proposed. By using this benchmark, the Semantic
Web systems can be evaluated against complex ontology configurations
using the standard metrics of loading time, repository size, query re-
sponse time and query completeness and soundness.

Keywords: Semantic Web, Benchmark, Web profile, Ontology profile,
Ontology

1 Introduction

One of the primary goals of the Semantic Web is to be able to integrate data from
diverse ontologies. To support such a need, various federated ontology systems
such as KAONP2P [8], Hermes [12] and Semplore [14] have been developed to
reason with Semantic Web ontologies, but the standard evaluation of such sys-
tems focuses on single ontology by using LUBM [7] - one benchmark system
designed to evaluate Semantic Web systems without considering the integration
of multi ontologies. Put in other words, the evaluation of multi-ontology knowl-
edge systems by using benchmark without ontology integration considered can
not truly reflect the performance of the evaluated systems. Therefore, a bench-
mark for evaluating multi-ontology systems is required. To our knowledge, except
our previous work by Ameet Chitnis et al. [2], no similar benchmarks have been
developed till now. In our previous work, we developed a benchmark to support
OWLII [11] - a sublanguage of OWL, and distributed sources committing to the
generated OWLII ontologies. However, this benchmark suffers from the following
deficiencies:

2 Y. Li, Y. Yu and J. Heflin

– Because this benchmark only supports OWLII, it cannot scale to work for
those users who want to customize their own ontologies to evaluate systems
that are sound and complete for other sublanguages of OWL. Therefore, it
is not flexible and customizable.

– This benchmark also does not consider the owl:sameAs statements in the
generated data sources. In the real Semantic Web, the owl:sameAs state-
ments are very common and play the key role in the integration of distributed
ontology instances, especially in the Linked Open Data cloud.

To solve the above issues, in this paper, we improved our benchmark to
implement a multi-ontology benchmark that makes the generated ontologies and
data sources customizable by asking users to provide customization options in
the form of a web profile and a set of ontology profiles. The former allows users
to customize the distribution of different types of desired ontologies. The latter
allows users to customize the expressivity of desired ontologies by making them
set the relative frequency of various ontology constructors. Put in other words,
the ontology profile provides users a way to define different OWL sublanguages.
Unlike previous benchmarks [2], our new benchmark allows us to speculate about
different visions of the future Semantic Web and examine how current systems
will perform in these contrasting scenarios. Although Linking Open Data and
Billion Triple Challenge data is frequently used to test scalable systems on real
data, these sources typically have weak ontologies and little ontology integration.
Our new benchmark can be used to speculate about similar sized (or larger)
scenarios where there are more expressive ontologies and richer mappings. In
this paper, we mainly make the following four technical contributions.

– We propose a two-level customization model including ontology profile and
web profile for users to describe scenarios required in their evaluations.

– We design and implement a randomized parse-tree construction algorithm to
generate ontological axioms directed by the two-level customization model.
Thereafter, we generate ontology mapping axioms that conform to the user
customized ontologies.

– We design and implement a graph-based query generator. Based on the gen-
erated synthetic data sources, our algorithm can construct different query
graph patterns. Then, we generate queries by abstracting from these pat-
terns. In this way, we can make each query have at least one answer.

– We implemented an owl:sameAs generation mechanism that can create
owl:sameAs in proportion consistent with real world data sets.

The remainder of the paper is organized as follows: Section 2 reviews the
related work. In Section 3, we describe our new benchmark algorithms. Section
4 presents the methodology for carrying out an experiment and the performance
metrics that can be used for evaluation. Finally, in Section 5, we conclude and
discuss future work.

A Multi-ontology Synthetic Benchmark 3

2 Related Work

As mentioned before, except our previous work in [2], there is seldom related
work similar to our multi-ontology Semantic Web benchmark system. However,
we still find some work that helps us to develop our proposed system.

The LUBM [7] is an example of a benchmark for Semantic Web knowledge
base systems with respect to large OWL applications. It makes use of a univer-
sity domain workload for evaluating systems with different reasoning capabilities
and storage mechanisms. Li Ma et al. [10] extended the LUBM to make another
benchmark - UOBM so that OWL Lite and OWL DL (except TBox with cyclic
definition and Abox with inequality definition) can be supported. However, both
LUBM and UOBM use a single domain/ontology namely the university domain
comprising students, courses, faculty etc. They did not consider the ontology
mapping requirement that are used to integrate distributed domain ontologies
in the real Semantic Web. In addition, they also did not consider users’ customiz-
ability requirement for their individual evaluation purposes. In the real world,
different researchers could design different systems supporting different ontology
languages. Therefore, for these users, they only need ontologies and data sources
that meet their specific evaluation requirements.

T. Gradiner and I. Horrocks [5] developed a system for testing reasoners with
available ontologies. This system mainly has two functions. The first is to process
ontologies and add them to the library, and the second is to benchmark one or
more reasoners using the ontologies in the library. The benefits of this approach
mainly include autonomous testing and flexible analysis results. In addition,
Ian Horrocks and Patel-Schneider [9] proposed a benchmark suite comprising
four kinds of tests: concept satisfiability tests, artificial TBox classification tests,
realistic TBox classification tests and synthetic ABox tests. The TBox refers
to the intentional knowledge of the domain (similar to an ontology) and the
ABox contains extensional knowledge. Meanwhile, Elhaik et al. [3] provided the
foundations for generating random TBoxes and ABoxes. The satisfiability tests
compute the coherence of large concept expressions without reference to a TBox.
However, these approaches neither create OWL ontologies and SPARQL queries
nor ontology mappings, and only focus on a single ontology at a time. Also, they
did not consider users’ customizability requirements.

Garcia-Castro and Gomez-Perez [4] proposed a benchmark suite for primarily
evaluating the performance of the methods provided by the WebODE ontology
management API. Although their work is very useful in evaluating ontology
based tools, it provides less information on benchmarking knowledge base sys-
tems. J. Winick and S. Jamin [13] presented an Internet topology generator which
creates topologies with more accurate degree distributions and minimum vertex
covers as compared to Internet topologies. Connectivity is one of the fundamen-
tal characteristics of these topologies. On the other hand, while considering a
Semantic Web of ontologies, there could be some ontologies not mapping to any
other ontology thereby remaining disconnected from the graph.

4 Y. Li, Y. Yu and J. Heflin

3 Benchmark Algorithms

As stated in the introduction, our proposed benchmark algorithm in this pa-
per mainly includes four parts: a two-level customization model consisting of
ontology profile and web profile for users to customize ontologies, one random-
ized parse-tree construction algorithm used to generate ontological axioms, one
graph-based query generator and one real world statistics based owl:sameAs
generation mechanism. Thus, in this part, we first describe the two-level cus-
tomization model for users to customize ontologies. Here, the sense of user cus-
tomizability means that we grant the user the freedom to freely configure their
individually preferred ontologies. Then, we will discuss our randomized parse-
tree ontological axiom generation algorithm. In the third subsection, we will
introduce our graph-based query generation algorithm. Finally, we will give our
ontology mapping and owl:sameAs generation mechanisms.

3.1 Two-level customization model

In the Semantic Web, there are multiple languages used to describe ontologies
with different features. OWL [1] is the W3C recommendation for a web ontology
language and includes three sublanguages: OWL Lite, OWL DL and OWL Full.
In these three sublanguages, OWL DL is the one that most closely corresponds
to Description Logics (DL) and broadly used by the semantic web community.
There are many Semantic Web systems and reasoners using varying subsets of
OWL DL languages. For instance, KAON2 [8] is based on OWL DL without
oneof and hasV alue constructors. OBII is based on OWLII [11], which is also
one subset of OWL DL. Therefore, our benchmark system chooses the set of
OWL DL constructors as our constructor seeds and is designed to be flexible in
expressivity by allowing users to customize these constructors in range of OWL
DL.

To make the generated ontology properly fulfill users’ personalization, we
design a two-level customization model to support users to customize their own
ontologies. First, we allow users to customize the relative frequency of various
ontology constructors in the generated ontologies. We call this ontology profile.
Basically, each ontology profile corresponds to a user-customized ontology sub-
language. Second, we allow users to customize the distribution of different types
of ontologies. We call this web profile. Each entry in the web profile corresponds
to one ontology profile. Put in other words, the web profile controls the selection
of different ontology profiles during ontology generation. A sample input of the
ontology profile and the web profile is shown in Fig.1.

In this sample input, the web profile contains four OWL DL sublanguages:
RDFS, OWL Lite, OWL DL and Description Horn Logic (DHL). Their distribu-
tion probabilities are set to be 0.4, 0.2, 0.3 and 0.1 respectively. This configura-
tion means that in our final generated ontologies, 40% ontologies use RDFS, 20%
ontologies use OWL Lite, 30% ontologies use OWL DL and 10% use DHL. For
each ontology profile, the distributions of different ontology constructors used in
the generated ontology are displayed. According to the characteristics of every

A Multi-ontology Synthetic Benchmark 5

DHL OWL Lite OWL DL RDFS

RDFS 0.4 OWL Lite 0.2

OWL DL 0.3 DHL 0.1

subClassOf 0.5

……
allValuesFrom 0

……
namedProperty 1

……

subClassOf 0.3

……
allValuesFrom 0.2

……
namedProperty 0.9

……

subClassOf 0.3

……
allValuesFrom 0.2

……
namedProperty 0.9

……

Ontology

Profiles
……

subClassOf 0.3

……
allValuesFrom 0.2 0.5

……
namedProperty 0.9

……

Web

Profile

Fig. 1. Two-level customization model.

ontology constructor appearing in ontological axioms, we categorized all OWL
DL constructors into three groups: top-level constructors, class constructors and
property constructors. Therefore, in each ontology profile, we also let users to
fill in three tables with their individual configurations. Each cell of these tables
is a number between 0 and 1 inclusive, which means the percentage of this con-
structor appearing in a generated ontology. Another thing should be noted is
that in some ontology languages such as OWLII and DHL, there are different
constructor restrictions on the left hand side (LHS) and right hand side (RHS)
of an axiom. To support it, users can specify two probabilities for a constructor.
One is the probability for the LHS of an axiom and the other is the probability
for the RHS of an axiom.

The constructors contained in each table are shown in Table 1. Since each
ontological axiom can be seen as a parse tree with the elements in the axiom as
nodes, the top-level constructors are those elements can be used as the root. The
class and property constructors are those that can be used to create class and
property expressions respectively. If we take the constructor analogously as the
operator in the math formula, each node on the parse tree can have maximum
two operands as children. So, in this perspective, we defined two operands for
each constructor as OP1 and OP2. There are five types of operands in total:
class type (CT), property type (PT), instance type (IT), named property (NPT)
and an integer number (INT). The CT means the operand is either an atomic
named class or a complex sub-axiom / sub-tree that has a class constructor as
its root. The PT means the operand can be one of constructors listed in the
table of property constructors. The NPT means named property. The IT means
the operand can be a set of instances. The last type of the operand is an integer
number INT which is often used to describe the cardinality restriction.

In this table, first, we should differentiate the hasV alue constructor and the
oneOf constructor. The hasV alue constructor uses a single individual, while the
oneOf constructor uses a set of individuals. Second, for cardinality constructors
such as minCardinality, maxCardinality and Cardinality, since the involved
integer value should be positive and 1 is the most common value in the real world,

6 Y. Li, Y. Yu and J. Heflin

we apply the Gaussian distribution with mean being 1 and each generated value
required to be greater than or equal to 1. Finally, our current table does not
consider the OWL2 constructors such as property composition. In future work,
we plan to support them.

With the inputs of these three tables, our randomized parse-tree construction
algorithm will be invoked to create ontological axioms. The details are discussed
in section 3.2.

Table 1. Top-level constructors, class constructors and property constructors.

Top-level constructor Class Constructor

Constructors DL Syntax Op1 Op2 Constructors DL Syntax Op1 Op2

rdfs:subClassOf C1 v C2 CT CT allValuesFrom ∀P.C PT CT
rdfs:subPropertyOf P1 v P2 PT PT someValuesFrom ∃P.C PT CT

equivalentClass C1 ≡ C2 CT CT intersectionOf C1 u C2 CT CT
equivalentProperty P1 ≡ P2 PT PT one of {x1,...,x2} IT

disjointWith C1 v ¬C2 CT CT unionOf C1 t C2 CT CT
TransitiveProperty P+ v P NPT complementOf ¬C CT
SymmetricProperty P≡(P−) NPT minCardinality ≥ nP PT INT
FunctionalProperty T v ≤1P+ NPT maxCardinality ≤ nP PT INT

InverseFunctionalProperty T v ≤1P NPT Cardinality PT INT
rdfs:domain ≥1P vC NPT CT hasValue PT IT
rdfs:range T v ∀U.D NPT CT namedClass

Property constructor

inverseOf P− PT namedProperty

3.2 Randomized parse-tree construction algorithm

Based on the above three constructor tables in section 3.1, our algorithm ran-
domly constructs one parse tree for each ontological axiom. In this parse tree,
the root node can be only selected from the top-level constructor table. Then,
each other node can be selected from either the class constructor table or the
property constructor table. The tree expansion will be terminated when either
all leaf nodes are named constructors including named classes (NC) or named
properties (NP) or the depth of the parse tree exceeds the given depth threshold
value. The detail steps of constructing this parse tree are as following:

(1) In the beginning, randomly select one constructor from the top-level
constructor table as the root node.

(2) According to operand type of the selected root constructor, we will go
to the class constructor table or the property constructor table. If the operand
is of class type, we will randomly select one class constructor from the class
constructor table. If the operand is of property type, we will randomly select
one property constructor from the property constructor table.

(3) Repeat step (2) until all leaf nodes in the current parse tree are named
constructors or the depth of the parse tree exceeds the given threshold value.

A Multi-ontology Synthetic Benchmark 7

In order to illustrate our algorithm procedure, Fig. 2 shows us an example.

A B C D

Fig. 2. One randomized parse-tree.

As shown in the this example, we want to generate one parse tree for the ax-
iom of A uB v ∃C.D. With our algorithm, first, suppose the rdfs:subClassOf
is selected from the top-level constructor table. Then, we check the operand type
of this constructor. According to the top-level table, we know this constructor
requires two class constructor operands for both LHS and RHS. Thus, we go to
the class constructor table for LHS. Suppose in this step, the intersectionOf
is selected. Similar to the first step, we know the intersectionOf needs two
class constructor operands and go to the class constructor table again. Then,
in this step, two named classes A and B are selected as the operands of the
intersectionOf . Till now, we complete the construction of the LHS of the given
axiom. Next step, we start to process the RHS. Because in the first step, the
RHS requires a class constructor, we go to the class constructor table and the
someV aluesFrom is selected, which needs one property constructor and one
class constructor as its operands. Thus, the property constructor table will be
searched and one named property C is returned. Then, we go to the class con-
structor table to get one named class D selected. Till this step, all leaf nodes
of the parse tree are named constructors including three named classes (A, B
and D) and one named property C. Therefore, our algorithm will terminate and
the corresponding axiom will be generated. The pseudo code of this algorithm
is displayed in Fig. 3.

As stated in the generation of the parse tree, each axiom takes one top-
level constructor as the root and expands the tree by iteratively and randomly
selecting constructors from the class constructor table and property constructor
table. Therefore, in Algorithm 1, we take one selected top-level constructor tc, the
class constructor table ct and the property constructor table pt as inputs. Then,
for each operand variable, we judge its type (Lines 3-4 and Line 9). If the variable
is of ClassConstructor type, we randomly select one constructor from the class
constructor table (Line 6) and then use the selected constructor to generate the
corresponding operands (Line 7). At the same time, the tree depth is incremented
by one (Line 5). On the other hand, if the variable is of PropertyConstructor
type, we randomly select one constructor from the property constructor table
(Line 11) and use the selected property constructor to generate the operands

8 Y. Li, Y. Yu and J. Heflin��������� 	 �
��� ����������������� ���������������������� !��� "#$ ���%&� #"$ ���%&� '"(������) �� ����&�*�!�& �������+��,) "#$ �-� ��&�!��. ��/0&�1�& !����� !���#"$ �-� !&��� !����� !��� ��%&�'"$ �-� /��/���2 !����� !��� ��%&�34 5�� 6'789:;<=> ? $ 6'78@98<=> ? ��� �A �/����. 1����%&�� �A �!$9BC6D ? $;7'"E ? FGH4 I���� �;7'"E J "E87<E6K; �� "#LK79M7< �2/�NA O� �� OP(Q�R4 ��� ��� Q�S4 �� 6' �2/�NA �&��������� !��� ����T4 ;7'"EUUV4 �&��������� !��� ## ? ��&�!������� !����#"(W4 �/����.�=6'> ? ���������������##$ #"$ '"(X4 ��,�Y4 �� 6' �2/�NA P��/���2������ !��� ����3F4 ;7'"EUU334 P��/���2������ !��� '# ? ��&�!������� !����'"(3H4 �/����.�=6'> ? ���������������'#$ #"$ '"(3R4 9BC6D ? ��Z�������"#$ 6'789:;<=>(3S4 ������ 9BC6D
Fig. 3. Randomized parse-tree construction algorithm.

(Line 12). Also, the depth is incremented by one(Line 10). When all leaf nodes
are type of NC or NP , or the depth exceeds the threshold, our construction will
stop (Line 2). Then, we will combine tc with the obtained operands to construct
one ontological axiom (Line 13). Finally, the constructed axiom is returned (Line
14).

3.3 Graph-based query generation algorithm

swat:last_name

swat:first_name

swat:jeff-heflin “Jeff”

“Heflin”

swat:last_name

swat:first_name

?x “Jeff”

?y

(a) (b)

Fig. 4. Query graph.

It is well-known that the RDF data format is by its very nature a graph.
Therefore, a given semantic web knowledge base (KB) can be basically modeled
as one big graph. Then, each SPARQL query is basically one subgraph over this

A Multi-ontology Synthetic Benchmark 9

big graph and different subgraphs form different query patterns that can be used
to generate queries. In our algorithm, after query patterns determined, we need
to replace some selected node values with query variables. In this process, if the
junction node of the query pattern is replaced with one query variable, then this
variable would be counted as the join variable in our final generated queries. To
illustrate this process, we can give an example. Suppose we have an initial graph
shown in Fig. 4(a). With this graph, we could replace swat:jeff -heflin and
“Heflin” with the variables ?x and ?y respectively shown in Fig. 4(b). Then,
we could get the following where clause of the generated SPARQL query:

〈?x swat:first name “jeff”〉
〈?x swat:last name ?y〉

 ��������� 	
��� ������������������
GenerateQueries(KnowledgeBase KB, int numQTP)

�������

 a SPARQL query

�������

 KB, the given Semantic Web Knowledge Base

 numQTP, # of query triple patterns in the generated query

1: Let initialGraph = extractSubgraph(KB), queryGraph = {}

2: Let start = randomly select one node from intialGraph

3: add(queryGraph, start)

4: �����
(numEdges(queryGraph) < numQTP) ��

5: Randomly select one edge Edge starting from “start” within initialGraph

6: add(queryGraph, Edge)

7: add(queryGraph, the ending node “end” of Edge)

8: Replace “end” with a variable in probability P

9: Randomly select one node from queryGraph and assign it to “start”

10:
���

����

 edge e in queryGraph ��

11:
��

(hasNoVars(e))
����

12: Replace the junction node of e with a variable

13: Let sparqlquery = formQuery(queryGraph)

14:
������

 sparqlquery

Fig. 5. Graph-based query generation algorithm.

The algorithm is displayed in Fig. 5. According to this algorithm, first, we
construct a large enough subgraph intialGraph with the number of nodes be-
ing much greater than the given number of query triple patterns in the final
generated query (Line 1). The reason of constructing an initialGraph is that
the size of the whole KB is often too big to model a graph for it. Therefore, an
initialGraph helps us to create a set of query graph patterns that can be used to
generate synthetic queries by providing a subset of knowledge in the whole KB.
Then, we randomly select one node start from intialGraph as the starting node
to construct a query pattern graph queryGraph (Lines 2 and 3). Begin with
start, we randomly select one edge starting with start and add this edge with
its ending node end into the queryGraph (Lines 5, 6 and 7). Then, we replace

10 Y. Li, Y. Yu and J. Heflin

end with a new variable in the probability P (Line 8) and update start (Line 9).
This process is iterated until the queryGraph includes numQTP edges (Line 4).
By this step, we successfully constructed one query pattern graph. Next step, we
need to check if each edge e in queryGraph contains at least one variable (Lines
10 and 11). If not, we need to replace the junction node of e with a new variable
(Line 12). The junction node means the node shared by at least two edges in
queryGraph. With the variable-assigned queryGraph, a SPARQL query can be
generated and returned (Lines 13 and 14).

3.4 Mapping ontologies and owl:sameAs generation

The mapping generation mechanism is basically the same as that of our earlier
work in [2]. We still model mappings into a directed graph of interlinked on-
tologies, where every edge is a map from a source ontology to a target ontology.
During mapping construction, in order to guarantee the mapping connectivity
and termination, before the mapping creation, we determine the number of ter-
minal nodes and randomly mark those many domain ontologies as terminal. This
way prevents a non-terminal node from attaining a zero out-degree and maintain
the connectivity. More details can be found in [2].

The source generation is also basically the same as that of our work in [2]
except the new function of owl:sameAs generation. With our current configu-
ration, the average number of triples for each data source is around 50, which
is obtained from our statistics of the real Semantic Web data by using Sindice
1 - a well-known semantic web index. The new owl:sameAs generation is also
based on the same statistic results. In our statistics, we randomly issued one
term query to Sindice and took its top 1000 returned sources as our samples.
In these 1000 sources, 27.1% of them contain owl:sameAs statements. Further-
more, in all data sources with owl:sameAs statements, around 20% of them
have owl:sameAs added, removed and updated and around 7% of them have no
change of owl:sameAs statements. Based on these results, we have the following
conclusions about owl:sameAs:

– In the real semantic web, owl:sameAs always exists. Therefore, a benchmark
system for the Semantic Web should generate owl:sameAs statements in
some proportion.

– Because the owl:sameAs statements could be added, removed and updated
in the real semantic web, a benchmark system for the Semantic Web should
also support the owl:sameAs change.

Currently, we only support the first point. As for the second, we plan to
implement it in our future work. For the current configuration of the given two-
level customization, the proportion of the data sources containing owl:sameAs
statements is roughly at the level of 27.1%, which is implemented by applying a
uniform distribution to generated RDF triples.

1 http://sindice.com/

A Multi-ontology Synthetic Benchmark 11

4 Experimental Methodology

In this part, we present our methodology of setting up an experiment for a multi-
ontology Semantic Web system and also the performance metrics that could be
used for the evaluation.

As mentioned in section 3.1, we ask users to provide two kinds of configuration
profiles: web profile and ontology profile. In each ontology profile, users need to
fill in three tables: the top-level constructor table, the class constructor table
and the property constructor table. The sum of the probabilities in each table of
the ontology profile should be 1. Otherwise, we will normalize them. Based on
the given setting information, the user customized ontologies, ontology mappings
and the related sources are generated.

With the synthetic data set, metrics such as Loading Time, Repository Size,
Query Response Time, Query Completeness and Soundness could serve as good
candidates for the system performance evaluation.

– Loading Time: This could be calculated as the time taken to load the Seman-
tic Web space: domain and map ontologies and the selected data sources.

– Repository Size: This refers to the resulting size of the repository after load-
ing the benchmark data into the system. Size is only measured for systems
with persistent storage and is calculated as the total size of all files that
constitute the repository. Instead of specifying the occupied disk space we
could express it in terms of the configuration size.

– Query Response Time: We recommend this to be based on the process used
in database benchmarks where every query is consecutively executed on the
repository for 10 times and then the average response time is calculated.

– Query Completeness and Soundness: With respect to queries we say a system
is complete if it generates all answers which are entailed by the knowledge
base. However, on the Semantic Web partial answers will also be acceptable
and hence we measure the degree of completeness of each query as a per-
centage of the entailed answers that are returned by the system. Similarly
we measure the degree of soundness of each query as the percentage of the
answers returned by the system that are actually entailed. On small data
configurations, the reference set for query answers can be calculated by using
state of the art DL reasoners like Racer and FaCT. For large configurations
we can use partitioning techniques such as those of Guo and Heflin [6].

5 Conclusions and Future Work

In this paper, based on our earlier work [2], we proposed a multi-ontology bench-
mark for the Semantic Web systems. This benchmark takes a two-level cus-
tomization model including the web profile and the ontology profile as its inputs
and generates user customized ontologies. At the same time, it can also generate
reasonable SPARQL queries for users and owl:sameAs statements in distributed
semantic data sources. By using this system, different ontology expert users can
configure their preferred ontologies to evaluate their proposed work.

12 Y. Li, Y. Yu and J. Heflin

However, there is still significant room for improvement. First, we need to
consider the inconsistency process in our ontology generation in future work.
To prevent this, we could check the ontology after generation, throw away the
whole ontology if inconsistent or use a reasoner that’s capable of pinpointing
inconsistencies and make the minimal change to make the ontology consistent.
We could also check after adding each axiom, and throw away the axiom if
it makes the ontology inconsistent. Second, our benchmark system does not
consider the features of the OWL 2 language, but the randomized parse-tree
construction algorithm can be easily adapted to support OWL 2’s new features.
Finally, the owl:sameAs generation mechanism in our current benchmark system
does not support the owl:sameAs update functions, which are proved to exist
in real semantic web data according to our statistics. Therefore, our future work
also includes improving the owl:sameAs generation mechanism of our system.

References

1. Web Ontology Language (OWL). Website, 2002. http://www.w3.org/TR/2002/

WD-owl-ref-20021112/.
2. A. Chitnis, A. Qasem, and J. Heflin. Benchmarking reasoners for multi-ontology

applications. In EON, pages 21–30, 2007.
3. Q. Elhaik, M. christine Rousset, and B. Ycart. Generating random benchmarks

for description logics. In In Proceedings of DL’98, 1998.
4. R. Garca-castro and A. Gmez-prez. A benchmark suite for evaluating the per-

formance of the webode ontology engineering platform. In In Proc. of the 3 rd
International Workshop on Evaluation of Ontology-based Tools, 2004.

5. T. Gardiner, I. Horrocks, and D. Tsarkov. Automated benchmarking of description
logic reasoners. In Description Logics, 2006.

6. Y. Guo and J. Heflin. Document-centric query answering for the semantic web. In
Web Intelligence, pages 409–415, 2007.

7. Y. Guo, Z. Pan, and J. Heflin. LUBM: A benchmark for owl knowledge base
systems. J. Web Sem., 3(2-3):158–182, 2005.

8. P. Haase and Y. Wang. A decentralized infrastructure for query answering over
distributed ontologies. In SAC ’07: Proceedings of the 2007 ACM symposium on
Applied computing, pages 1351–1356, New York, NY, USA, 2007. ACM.

9. I. Horrocks and P. F. Patel-Schneider. Dl systems comparison (summary relation).
In Description Logics, 1998.

10. L. Ma, Y. Yang, Z. Qiu, G. T. Xie, Y. Pan, and S. Liu. Towards a complete owl
ontology benchmark. In ESWC, pages 125–139, 2006.

11. A. Qasem, D. A. Dimitrov, and J. Heflin. Efficient selection and integration of data
sources for answering semantic web queries. International Conference on Semantic
Computing, pages 245–252, 2008.

12. T. Tran, H. Wang, and P. Haase. Hermes: Data web search on a pay-as-you-go
integration infrastructure. Web Semantics, 7(3):189–203, 2009.

13. J. Winick and S. Jamin. Inet-3.0: Internet topology generator. Technical Report
UM-CSE-TR-456-02, EECS, University of Michigan, 2002.

14. L. Zhang, Q. Liu, J. Zhang, H. Wang, Y. Pan, and Y. Yu. Semplore: An IR
approach to scalable hybrid query of semantic web data. In ISWC/ASWC, pages
652–665, 2007.

