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ABSTRACT
In recent years, there has been an explosion of publicly avail-
able RDF and OWL data sources. In order to effectively and
quickly answer queries in such an environment, we present
an approach to identifying the potentially relevant Semantic
Web data sources using query rewritings and a term index.
We demonstrate that such an approach must carefully han-
dle query goals that lack constants; otherwise the algorithm
may identify many sources that do not contribute to even-
tual answers. This is because the term index only indicates
if URIs are present in a document, and specific answers to
a subgoal cannot be calculated until the source is physi-
cally accessed - an expensive operation given disk/network
latency. We present an algorithm that, given a set of query
rewritings that accounts for ontology heterogeneity, incre-
mentally selects and processes sources in order to maintain
selectivity. Once sources are selected, we use an OWL rea-
soner to answer queries over these sources and their corre-
sponding ontologies. We present the results of experiments
using both a synthetic data set and a subset of the real-world
Billion Triple Challenge data.

Categories and Subject Descriptors
H.3.4 [Systems and Software]: Distributed systems

General Terms
Theory
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1. INTRODUCTION
In the Semantic Web, the definitions of resources and the

relationship between resources are described by ontologies.
The resources in the Web are independently generated and
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distributed in many locations. In such an environment, we
often need to integrate the ontologies and their data sources
and access them without regard to the heterogeneity and the
dispersion of the ontologies. In order to support this require-
ment, we proposed an index-based mechanism for ontology-
based information integration [2]. According to this method,
each RDF and OWL data source in the Semantic Web can
be treated as a bag of URIs and Literals. Then, a term in-
dex is created to integrate these sources. If we reformulate
a conjunctive query into a set of Boolean subgoals, then we
can use this index to only access those sources that might
be relevant to the query. However, because the term index
only indicates if URIs or Literals are present in a document,
specific answers to a subgoal of the given query cannot be
calculated until the sources are physically accessed - an ex-
pensive operation given disk/network latency. In addition,
in the real world, the number of sources related to a sub-
goal could be so large that it is impossible to load all of them
into a reasoner that can then answer the queries. To address
these issues, we present a query optimization algorithm for
ontology-based information integration using a term index.
Given a set of query rewritings that accounts for ontology
heterogeneity, this algorithm incrementally selects and pro-
cesses sources. Once sources are selected, we use an OWL
reasoner to answer queries over these sources and their cor-
responding ontologies. The contributions of this paper are
as following:

• We present a “flat-structure” query optimization algo-
rithm that takes a set of query rewritings as input and
uses the selectivity of each triple pattern in the rewrit-
ings as the heuristic to plan query execution.

• We conduct a number of experiments to evaluate the
characteristics of our proposed algorithm. We demon-
strate that the proposed algorithm outperforms our
previous algorithm [2] on both a synthetic data set
with 20 ontologies having significant heterogeneity and
a real world data set with 73,889,151 triples distributed
in 21,008,285 documents.

The remainder of the paper is organized as follows: In
Section 2, we review related work. In Section 3, we describe
the query optimization algorithm for ontology-based infor-
mation integration using the term index. Section 4 presents
the experiments that we have conducted to evaluate the pro-
posed algorithm. Finally, in Section 5, we conclude and dis-
cuss future work.



2. RELATED WORK
Currently, there are mainly three areas of work related

with our paper: RDF query optimization, query answering
over distributed ontologies and database query optimization.

In RDF query optimization, Hexastore [8] creates all 6-
way indexes (SPO, SOP, PSO, POS, OPS, OSP): one for
each sorting order of subject, predicate and object. It has
been demonstrated that this strategy results in good re-
sponse time for conjunctive queries. The major disadvan-
tages are that it relies on centralized knowledge bases and
that the indexes are quite expensive in terms of space. GRIN
[7] developed a novel index for graph-matching queries in
RDF. This index identifies selected central vertices and the
distance of other nodes from these vertices. However, it is
still not clear how GRIN could be adapted for a distributed
context. In query answering over distributed ontologies, T.
Tran et al. proposed Hermes [6], which translates a keyword
query into a federated query and then decomposes this into
separate SPARQL queries. A number of indexes are used,
including a keyword index, mapping index, and structure
index. The main drawback is that it does not account for
schema heterogeneity. Stuckenschmidt et al. [5] suggested a
global data summary for locating data matching query an-
swers in different sources and the query optimization. How-
ever, this method does not consider the heterogeneity of the
distributed ontologies. In the database field, Selinger et al.
[4] proposed query optimization ideas including using statis-
tics about the database instance to estimate the cost of a
query evaluation plan, considering only plans with binary
joins in which the inner relation is a base relation (left-deep
plans) and postponing Cartesian product after joins with
predicate. However, in the Semantic Web, it is very com-
mon that data from the same relation is spread among many
files. In such situations, query plans need to be developed
incrementally.

3. QUERY OPTIMIZATION ALGORITHM
As stated in the introduction, our flat-structure query op-

timization algorithm is based on a term index that is used
to integrate the distributed and heterogeneous semantic web
ontologies and data sources. Basically, the term index is an
inverted index, where each term is either a full URI (taken
from the subject, predicate or object of a triple) or a string
literal value. Due to limited space, we do not present details
of the term index. Please see our technical report [1] for
details. Given a set of conjunctive query rewritings, our al-
gorithm employs a source selection strategy that prioritizes
selective subgoals of the query and uses the sources that are
relevant to these subgoals to provide constraints that could
make other subgoals more selective. This optimization algo-
rithm can be combined with any query rewriting algorithm
that produces a set of conjunctive queries. We begin by pro-
viding a brief overview of the architecture of our system and
then discuss the details of our proposed query optimization
algorithm.

In our system, the Indexer is periodically run to create the
term index for all of the data sources, which are committing
to different heterogeneous domain ontologies. These ontolo-
gies are integrated by mapping ontologies and the predicates
defined in them are spread among many data sources. All
ontologies are expressed in OWLII, a fragment of OWL [3].
The Indexer translates the axioms in these ontologies into
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q(?p, ?n, ?pap) 

<?p  swrc:affilitation  lehigh-univ>    <?pap  foaf:maker  ?p>    <?pap  akt:has-title  semantic-web>  

Θ = {} 

<?pap  foaf:maker  ?p>  

Total # of srcs: 4million 
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Θ={ ?pap/paper1, ?pap/paper2, ?pap/paper3  

           ?pap/paper4, ?pap/paper5 } 

<?pap  foaf:maker  ?p>  
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Figure 1: Query optimization tree

GAV/LAV rules. Given a conjunctive query, the Reformula-
tor uses the domain and mapping ontologies to determine all
possible conjunctive query rewritings. In our current imple-
mentation, we use the algorithm proposed by Qasem et al.
[3] to generate query rewritings. For each rewriting, we em-
ploy our proposed optimization algorithm to incrementally
collect relevant data sources. Once sources are selected, the
Loader reads the selected sources together with their cor-
responding ontologies and inputs them into a sound and
complete OWL reasoner, which is then queried to produce
results. Since the selected sources are loaded in their entirety
into a reasoner, any inferences due to a combination of these
selected sources will also be computed by the reasoner.

As mentioned earlier, the flat-structure algorithm priori-
tizes selective query triple patterns (QTPs) to incrementally
select relevant sources and solve queries. Thus, given a con-
junctive query, our algorithm first computes the selectivity
of each query triple pattern (QTP) contained in this query.
We have found that typically the selectivity of a QTP is
closely related to the number of sources that the term in-
dex determines are relevant to it. Therefore, in the follow-
ing parts, when we mention a QTP’s selectivity, we mean
with respect to the number of relevant sources. Through
the comparison of all QTPs’ selectivities, we start with the
most selective one and evaluate it by asking the reasoner.
Then, the substitutions obtained from last step are applied
to those QTPs having a shared variable (join condition in
database terminology) with the chosen QTP and their re-
spective selectivities are updated correspondingly. Then, we
will start with the next most selective QTP and repeat the
previous steps. This process is iteratively executed until all
QTPs have been evaluated. Finally, the query answers and
its relevant sources can be identified.

Figure 1 shows us an example. In this tree, each node
consists of three fields: the available substitutions, the QTP
node and the selected sources. This sample query includes
three QTPs: 〈 ?p, swrc:affiliation, lehigh-univ 〉 (qtp1),
〈 ?pap, foaf :maker, ?p 〉 (qtp2) and 〈 ?pap, akt:has-title,
“semantic-web” 〉 (qtp3). Using the term index, we might
find that these QTPs’ selectivities are 80, 4 million and 75
respectively. Since qtp3 is the most selective, we load and



 

Algorithm 1 Query optimization 

function OptimizeQuery(Query q) returns a list of sources 

       inputs: q, a conjunctive query  

1:   Let allsrcs = �, query = true, sibs = a set of qtps in q, rs = � 

2:   srcs[] = array of sets of sources, indexed by qtps 

3:   while (���� � �) 

4: for each ��� 	 ���� do   

5:        if (
� � �) then 

6:  srcs[qtp] = index-lookup({qtp}) 

7:        else srcs[qtp] = � 	 ��  
index-lookup({qtp�}) 

8:    Let on = ��� ���� 	 ���� �|�
������ !|" 

9:    #$$�
�� � #$$�
�� � �
�����! 

10:    load(srcs[on], KB) 

11: ���� �  ���� % &��' 

12: Let query = �( 
) *  �� 

13: Let 
� = askReasoner (KB, query) 

14: return allsrcs 

 

 

 

 

Figure 2: Flat-structure query optimization algo-

rithm

evaluate its sources first. Then, we apply the obtained sub-
stitutions for ?pap into qtp1 and qtp2. After this step, their
selectivities are updated to be 80 and 90 respectively. Then,
we start to evaluate the next most selective QTP, qtp1, and
apply its substitutions for ?p into qtp2. After this step, we
only have qtp2 left and evaluate it. Finally, the numbers of
sources selected by each QTP are 75 for qtp3, 80 for qtp1

and 9 for qtp2. Therefore, the total number of sources iden-
tified by the given query is 75+80+9 = 164. Note, in this
process, we keep track of all sources that have been loaded,
and do not repeat the loading of any source while answering
a particular query.

The details of our approach are given in Algorithm 1. It
takes a conjunctive query rewriting as its input. First, we
initialize the selectivity of each QTP contained in sibs by
executing a term index lookup (Lines 5-6). Then, we assign
the most selective QTP to on and collect its relevant sources
(Lines 8-10). Meanwhile, we remove on from sibs (Line 11)
and evaluate on to get its substitutions (Lines 12-13). Each
substitution θ is then applied to on’s siblings to constrain
their individual selectivity (Line 7). Based on the new selec-
tivity, the next most selective node is chosen and the above
process is repeated until all QTPs have been processed (Line
3). Finally, the sources collected by q are returned (Line 14).

4. EVALUATION
In this section, we have conducted experiments on both

synthetic and real world data sets to evaluate our query opti-
mization algorithm. The evaluations are done on a worksta-
tion with Xeon 2.93G CPU and 6G memory running UNIX.
For both experiments, we use the queries automatically gen-
erated by a graph-based synthetic query generator. These
queries range from one to four triples, have at most four
variables each, and each QTP of each query satisfies the
join condition with at least one sibling QTP. For more de-
tails, see our technical report [1]. Our implementation of
the Indexer uses Lucene to build the inverted index. In all
cases, we use KAON2 as our Reasoner.

4.1 Source Selectivity Evaluation
Our first experiment compares the flat-structure algorithm

to our original “non-structure” algorithm [2] with respect to
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Figure 3: Average query response time with increas-

ing number of unconstrained QTPs

query response time, source selectivity and number of in-
dex accesses. We conducted this experiment with 20 ontolo-
gies, 8000 data sources, and a diameter of 6, meaning that
the longest sequence of mapping ontologies between any two
domain ontologies is six. It took 21.5 seconds to build the
75.3MB index. We issue 100 random queries and for each
query compute the response time, number of selected sources
and number of index accesses. We then group queries based
on the number of unconstrained QTPs, and compute aver-
age for each group. We define an unconstrained QTP as
one with variables for both its subject or object, or with the
rdf :type predicate and a constant object.

Figure 3(a) displays the comparison of the average query
response time for both algorithms. We can see that the flat-
structure algorithm performs better than the non-structure
algorithm in all cases. Furthermore, we can conclude that
the flat-structure algorithm scales better with an increasing
number of unconstrained QTPs than the non-structure al-
gorithm does. This is because more unconstrained QTPs
lead to more opportunities to optimize the query by in-
telligently selecting sources. At the same time, because
our flat-structure algorithm has a better selectivity shown
in Figure 3(b), the query response time does not increase
sharply as the non-structure algorithm does. Figure 3(b)
displays the comparison of the average number of selected
sources for both algorithms. We can see the selectivity
of the flat-structure algorithm is roughly linear, while the
non-structure algorithm is exponential the number of un-
constrained QTPs. Figure 3(c) displays the comparison of
the average number of index accesses for both algorithms.
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Figure 4: Experimental results of the flat-structure

algorithm over the real world data set

It shows that the flat-structure algorithm has more index
accesses than the non-structure algorithm when the num-
ber of unconstrained QTPs increases. The reason is that in
case of the flat-structure algorithm, one QTP can appear
in multiple query rewritings and consequently has a greater
number of index lookups.

4.2 Scalability Evaluation
In this section, we evaluate our system’s scalability by

using a set of real world data sources. We chose a subset
of the Billion Triple Challenge (BTC) 2009 data set, fo-
cusing on four collections: http://data.semanticweb.org/,
http://sws.geonames.org/, http://dbpedia.org and http://
dblp.rkbexplorer.com. The total number of triples in this
dataset is 73,889,151, which are scattered in 21,008,285 doc-
uments. The size of documents varies from roughly 5 to 50
triples each. In order to enable integration of these hetero-
geneous documents, we manually created a set of mapping
ontologies. Our index construction time is approximately 58
hours and the size of the resulting index is approximately
18GB. Each document takes around 10ms on average to
be indexed. The Lucence configurations are 1500MB for
RAMBufferSize and 1000 for MergeFactor, which are the
best tradeoff between index building and searching for our
experiment.

Because the non-structure algorithm does not propagate
constant constraints when answering queries, it cannot scale
to the BTC data set since most of our synthetic queries have
at least one unconstrained QTP. For example, consider the
query Q: {〈 ?x0, swrc:affiliation, “lehigh-univ” 〉. 〈 ?x2,
akt:has-title,“Hawkeye”〉. 〈 ?x2, foaf :maker, ?x0 〉. 〈 ?x0,
akt:full-name, ?x1 〉}. For the non-structure algorithm, the
number of sources that can potentially contribute to solv-
ing 〈?x2, foaf :maker, ?x0〉 is 3,485,607, which is far too
many to load into a memory-based reasoner. However, the
flat-structure algorithm can easily handle this query because
the number of sources for the same QTP becomes 114 after
join constants are considered. Thus, we only give the exper-
imental results of the flat-structure algorithm on BTC data
set.

As shown in Figure 4, the flat-structure algorithm scales
well in source selectivity and index accesses even though
the query response time is exponential. According to the
experimental results, for the whole query set, the average
query response time is 35.5s, the average number of index

accesses is around 4.8 and the average number of selected
sources is around 511.3.

Since our algorithm does not yet select all relevant sources
with owl:sameAs information, we assume an environment
where any relevant owl:sameAs information is already sup-
plied to the reasoner. We do this by initializing the KB with
the necessary owl:sameAs statements.

5. CONCLUSIONS AND FUTURE WORK
In this paper, we proposed a flat-structure query optimiza-

tion algorithm for information integration of many sources
committing to different ontologies. The experiments demon-
strated that our new algorithm is better than our prior work
[2] in that it has better query response time, because al-
though it requires more index accesses, its source selectivity
is less affected by the number of unconstrained QTPs. We
have also shown the system scales to reasonable problem
sizes, allowing randomly generated queries against 20 mil-
lion heterogeneous data sources to complete in 30 seconds.

However, there is still significant room for improvement.
First, it is relatively more expensive to use our current algo-
rithm to compute the set of rewritings for the given conjunc-
tive query. We intend to develop a better query optimization
algorithm that will further improve query response time and
better source selectivity, while also reducing the cost of cal-
culating query rewritings. Second, our algorithm needs to
be adapted to locate relevant owl:sameAs statements. We
believe that solving such problems will lead to a pragmatic
solution for querying a large, distributed, and ever changing
Semantic Web.
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