
A Scalable Indexing Mechanism for Ontology-Based Information Integration

Yingjie Li1, Abir Qasem2, Jeff Heflin1

1Department of Computer Science and Engineering, Lehigh University
19 Memorial Dr. West, Bethlehem, PA 18015, U.S.A.

{yil308, heflin}@cse.lehigh.edu
2Department of Computer Science, Bridgewater College
402 East College Street, Bridgewater, VA 22812, U.S.A.

aqasem@bridgewater.edu

Abstract

In recent years, there has been an explosion of publicly
available RDF and OWL web pages. Typically, these pages
are small, heterogeneous and prone to change frequently.
In order to effectively integrate them, we propose to adapt a
query reformulation algorithm and combine it with an infor-
mation retrieval inspired index in order to select all sources
relevant to a query. We treat each RDF document as a bag
of URIs and literals and build an inverted index. Our sys-
tem first reformulates the user’s query into a set of subgoals
and then translates these into Boolean queries against the
index in order to determine which sources are relevant. Fi-
nally, the selected data sources and the relevant ontology
mappings are used in conjunction with a description logic
reasoner to provide an efficient query answering solution
for the Semantic Web. We have evaluated our system using
ontology mappings and ten million real world data sources.

1 Introduction

In recent years, many large semantic web knowledge
bases (like DBPedia) have followed Linked Open Data1

guidelines and exposed their contents via a set of dy-
namically generated web pages about each resource con-
tained within. Unlike traditional applications in distributed
databases, these semantic web-enabled pages are often
small (containing fewer than 50 triples), heterogeneous
(committing to many different schemas or ontologies) and
are prone to change frequently. The field of information in-
tegration has developed algorithms for querying distributed,
heterogeneous databases in such an situation. However, this
work often assumes a small number of total data sources,

1http://linkeddata.org/

and that human-generated summaries of the content of each
are available.

In this paper we build upon our earlier work in ontology-
based information integration [5]. In that work, we defined
relevance files and adapted the PDMS information integra-
tion algorithm [3] to reformulate the query into alterna-
tives to collect relevant sources. The most significant draw-
backs to this original approach are: the reliance on human-
generated relevance statements for each source, and the in-
ability of the relevance language to satisfactorily summarize
sources like people’s home pages.

We make two technical contributions in this paper. First,
we combine our previous reformulation algorithm with an
index inspired by the field of information retrieval (IR). This
index is then used to select potentially relevant sources.
Second, we conduct a number of experiments to evaluate
the characteristics of our system, and demonstrate that it
improves upon its predecessor not only by allowing fully
automatic index generation, but also by being more selec-
tive while retaining completeness.

The rest of the paper is organized as follows: Section 2
describes specific details about our index based source se-
lection algorithm. Then, section 3 presents the experiments
that we have conducted to evaluate the algorithm. In section
4, we review related works. Finally, section 5 concludes and
discusses future work.

2 Index-based Source Selection Algorithm

Our Index-based Source Selection Algorithm is inspired
by the IR techniques. It is well-known that IR approaches
treat each document as a bag of words. Unlike typical doc-
ument collections, the units in semantic web documents are
triples not words. Each triple consists of three parts: sub-
ject, predicate and object. Both the subject and predicate
are always URIs, but the object could be a URI or a Literal

1

ns2:id133,
ns2:affiliation;
ns1:LEHIGH

triples
RDF

triples Indexer
Index

ns1:id132,
ns1:full-name,
"John Smith"

ns1:id132,
ns2.affiliation,
ns1:UPENN

ns3:id134,
ns1:full-name,
“John Wong”

ns1:id132 D1

D1 D2 D3

ns1:full-name D1,D3

John D1,D3

Smith D1

ns1:UPENN D1

ns2:id133 D2

ns1:LEHIGH D2

ns2:affiliation D1,D2

Wong D3

ns3: id134 D3

Figure 1. RDF inverted index

/ datatype value. If we let U be the set of URIs and L be
the set of Literals, then an RDF document d has the form
d v U × U × (U t L). We then treat an RDF document
as a bag of URIs and Literals and create an inverted index.
Literal values are indexed using standard IR techniques for
free text, thus, each word in the literal is treated as a sepa-
rate term. In this way, our system can support queries that
involve partial string matches. Thus, the terms of the docu-
ment can be formally expressed as following:

terms(d) ≡ {x| < s, p, o >∈ d∧ [x ≡ s∨x ≡ p∨ (o ∈
U ∧ x ≡ o) ∨ (o ∈ L ∧ x ∈ lit− terms(o))]}

where lit-terms() is a function that extracts terms from
literals, and may involve typical IR techniques such as stem-
ming and stopwords. Given a document collection D, the
dictionary of our system is then

⋃
d∈D terms(d). We have

implemented an algorithm that takes an RDF document d
and its identifier (e.g., a URL) as input, constructs a vir-
tual document consisting of terms(d), and then indexes
this document using Lucene. An example inverted index
is given in Figure 1.

Given a conjunctive query, we first adapt the OBII-
GNS reformulation algorithm [6] to reformulate the given
query into a set of subgoals. Then, an index-compatible
Boolean query is constructed to identify potentially rele-
vant data sources. This process is described in Algorithm
1. This algorithm constructs index-compatible Boolean
queries and identify potentially relevant data sources. In
this process, we need to explain the translation of class
membership. After query reformulation, the class mem-
bership query would be transformed into a goal node of
ns:Class(x) (suppose ‘ns’ stands for the namespace and
‘Class’ stands for the name of one domain class defined
in ‘ns’). In this case, when we are constructing our
Boolean queries, we need to expand the class membership
query into the triple pattern with the form “ns:Class AND

rdf :type”. For example, consider a query reformulated into
the goals {u:Professor(x), u:teaches(x, cs:proglang),
j:works-at(x, y)}, then its Boolean query has the form
of (u:Professor AND rdf :type) OR (u:teaches AND
cs:proglang) OR (j:works-at). More details about this
algorithm can be found in [4].

Algorithm 1 Source selection by index
SELECTED-BY-INDEX(RQN: Reformulated Query Nodes)

1: sources ← ∅
2: for each n ∈ RQN do
3: if n typeOf Unary Node then
4: qterm ← “(rdf :type AND” + n.predicate + “)”
5: else
6: qterm ← “(” + n.predicate
7: if n.subject typeOf Constant then
8: qterm ← qterm+“ AND ”+n.subject
9: if n typeOf owl : ObjectProperty then

10: if n.object typeOf Constant then
11: qterm ← qterm+“ AND ”+n.object
12: else
13: if n typeOf owl : DatatypeProperty then
14: lterms ←lit−terms(n)
15: for each lterm ∈ lterms do
16: qterm ← qterm + “ AND lterm”
17: boolean query.add(qterm + “) OR”)
18: sources ← askIndex(INDEX, boolean query)
19: return sources

3 Evaluation

In this section, we have conducted experiments on both
synthetic and real world data sets to evaluate our system’s
source selectivity and scalability. The first is done on a
desktop with P4 2.6G CPU and 3G memory running Win-
dows XP professional. The second is done on a workstation
with Xeon 2.93G CPU and 6G memory running UNIX. In
the indexer implementation, we currently use Lucene as our
index builder. In all cases, we use KAON2 as our Reasoner.

3.1 Source Selectivity Evaluation

Our first experiment attempts to demonstrate that the IR-
inspired index is superior to the relevance file indices. We
will use IR and REL, respectively to distinguish these two
approaches. We conducted this experiment with 50 ontolo-
gies, 1000 data sources, and a diameter of 6, meaning that
the longest sequence of mapping ontologies between any
two domain ontologies is six. In this experiment, our IR in-
dex size is 10.8MB with the size of original data sources be-
ing 21.5MB. The time to construct the IR index is 5,094ms,

2

(a)

(b)

0

10

20

30

40

50

60

70

80

90

100

of results selected sources

� ���� REL

IR

1

10

100

1000

10000�� ��	 �
� � ���� �� �� �
��� �
REL

IR

Figure 2. Source selection and Response
time of IR and REL

while it takes 14,593ms to construct the REL index. We
issue 200 random queries.

Figure 2(a) displays the average number of results and
average number of selected sources for each query. Ob-
serve that IR is more selective than REL in source selection
but the query answers are still guaranteed to be the same.
In this result, we select approximately 23% fewer sources
than in the REL method without losing any completeness.
Figure 2(b) compares the response time of both systems in-
cluding time to reformulate the query (reformTime), time to
select sources (selectTime), time to load sources from local
disk files (loadTime) and time spent by KAON2 reasoner
to answer the query using only the loaded sources (reason-
Time). The key observation here is that the totalTime of
IR is around 10% smaller than that of REL (1317.655ms vs
1478.385ms). The reason is that in both systems, loading
sources is the dominant system cost, so fewer sources se-
lected result in big gains. It should be mentioned that the IR
system has a worse select time than REL. This is because
the REL system uses a memory-based index, while IR uses
a disk-based index to achieve greater scalability.

3.2 Scalability Evaluation

In this section, we will evaluate our system’s scal-
ability by using set of real world data sources. We
choose a subset of the Billion Triple Challenge

Query Query string # of Reformulated
query terms

1 ?person dbpedia:name “James A.
Hendler”

6

2 ?paper swrc:author swrc:abir-qasem 4
?paper swrc:author swrc:jeff-heflin

3 ?person swrc:affiliation
swrc:lehigh-university

5

4 ?person akt:full-name “Jeff Heflin” 11
?person swrc:affiliation ?org

Table 1. Test queries

(BTC) 2009 data set, focusing on four collections:
http://data.semanticweb.org/, http://sws.geonames.org/,
http://dbpedia.org and http://dblp.rkbexplorer.com. The
total number of triples in this dataset is 73,889,151, which
are scattered in 21,008,285 documents. The documents
confirm our earlier claims about small size, varying from
roughly 5 to 50 triples each. Meanwhile, we also create
some mapping ontologies to integrate these heterogeneous
documents. Based on this dataset, we have designed 4
queries to evaluate our system (Table 1). The # of terms for
each query are determined by the mapping ontologies and
local axioms defined for the selected data sources. In this
experiment, our index construction time is around 58 hours
and its size is around 18GB. Each document takes 10ms on
average to be indexed.

Table 2 shows the source selectivity of our system by
triple level and document level. Observe that our in-
dex based mechanism is quite selective for our designed
queries in both terms of number of triples selected and
number of documents selected. Our metrics mainly fo-
cus on the triple selectivity and the document selectivity.
The triple/document selectivity is the ratio of the number
of selected triples/documents over the total number of the
triples/documents. In this result, both our triple and docu-
ment selectivity are less than 0.1%. Figure 3 shows the per-
formance of our system for answering these four queries.
Observe that our system can scale well to real world data
with reasonable reformTime, selectTime, loadTime and rea-
soning time (note the logarithmic scale). The third observa-
tion is that our system performs better for queries Q1, Q2
and Q3 with selective terms such as “James A. Hendler”
and “Jeff Heflin”. This is because these terms make our sys-
tem select less sources. For those queries without selective
terms such as Q4 having a triple with two variables, the sys-
tem’s performance become worse than that of Q1, Q2 and
Q3 even when no answers are returned. We will address this
problem in future work.

In addition, we compared the selector component of our
system with Sindice. The motivation is to see how effective
a local ”bag of URIs” index is vs. querying a remote seman-
tic web search engine to retrieve the relevant triples. The

3

Query # of Results # of Selected # of Selected
triples documents

1 142 715 143
2 2 46 9
3 15 163 20
4 16 25342 5069

Table 2. Source selectivity

1

10

100

1000

10000

100000

reformTime selectTime loadTime reasonTime

�� ��� ��� � �	
�� � �� ���
� �
Q1

Q2

Q3

Q4

Figure 3. Performance of IR

experimental results show that our system performs faster
than that of using Sindice. Due to limited space, we can not
describe its details. We refer the readers to Li et al. [4] for
more.

4 Related Work

Currently, there are mainly two areas of work related
with our paper: Information Integration and RDF indexes.

In Information Integration, Haase and Motik [2] devel-
oped a mapping system for OWL that involves relating con-
juctive queries. However, they do not explicitly address the
issue of distributed data, and provide no means of index-
ing the relevant sources. Peer-to-peer (P2P) semantic web
systems like Bibster [1] address the distributed nature of
the Web, but are insufficient for our purpose because they
rely on a common ontology. Peers in Bibster might have
different data, but use the same ontologies. Heremes [7]
translates a keyword query provided by the user into a feder-
ated query and then decomposes this into separate SPARQL
queries that are issued to web data sources. However, it does
not account for rich schema heterogeneity.

Regarding work on RDF indexes, Hexastore attempts to
achieve scalability by replicating each triple six times: one
for each sorting order of subject, predicate and object [9].
It has been demonstrated that this strategy results in good
response time for conjunctive queries. The major disadvan-
tage of this approach is that the indexes are quite expensive
in terms of space. GRIN is a novel index developed specif-

ically for graph-matching queries in RDF [8], but it still is
not clear how it could be adapted for a distributed context.

5 Conclusions and Future Work

In this paper, we have proposed a scalable IR-inspired in-
dexing mechanism for ontology-based information integra-
tion. The experiments demonstrated that our new system
is better than our prior work with higher source selectiv-
ity and 10% improvement in response time. We have also
shown our system is able to respond to many queries on a
20 million document real world data set in seconds.

However, there is still significant room for improvement.
First, our current algorithm’s performance will decline sig-
nificantly when there are triple patterns that lack constants.
We intend to develop an optimizer that can use the most
selective triple patterns to solve this kind of queries. Sec-
ond, our algorithm needs to be adapted to locate relevant
owl:sameAs statements. We believe that solving such
problems will lead to a pragmatic solution for querying a
large, distributed, and ever changing Semantic Web.

References

[1] P. Haase, J. Broekstra, M. Ehrig, M. Menken, P. Mika,
M. Olko, M. Plechawski, P. Pyszlak, B. Schnizler, R. Siebes,
S. Staab, and C. Tempich. Bibster - a semantics-based bibli-
ographic peer-to-peer system. In International Semantic Web
Conference, pages 122–136, 2004.

[2] P. Haase and B. Motik. A mapping system for the integration
of owl-dl ontologies. In IHIS ’05: Proceedings of the first
international workshop on Interoperability of heterogeneous
information systems, pages 9–16, New York, NY, USA, 2005.
ACM.

[3] A. Y. Halevy, Z. G. Ives, D. Suciu, and I. Tatarinov. Schema
mediation in peer data management systems. Data Engineer-
ing, International Conference on, page 505, 2003.

[4] Y. Li, A. Qasem, and J. Heflin. A scalable indexing mech-
anism for ontology-based information integration. Technical
Report LU-CSE-10-001, Lehigh University, 2010.

[5] A. Qasem, D. A. Dimitrov, and J. Heflin. Efficient selection
and integration of data sources for answering semantic web
queries. International Conference on Semantic Computing,
pages 245–252, 2008.

[6] A. Qasem, D. A. Dimitrov, and J. Heflin. Goal node search
for semantic web source selection. Web Intelligence and Intel-
ligent Agent Technology, IEEE/WIC/ACM International Con-
ference on, pages 566–569, 2008.

[7] T. Tran, H. Wang, and P. Haase. Hermes: Data web search
on a pay-as-you-go integration infrastructure. Web Semant.,
7(3):189–203, 2009.

[8] O. Udrea, A. Pugliese, and V. S. Subrahmanian. Grin: A
graph based rdf index. In AAAI, pages 1465–1470, 2007.

[9] C. Weiss, P. Karras, and A. Bernstein. Hexastore: sextuple
indexing for semantic web data management. Proc. VLDB
Endow., pages 1008–1019, 2008.

4

