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Abstract

Due to the decentralized nature of the Semantic Web, the
same real-world entity may be described in various data
sources with different ontologies and assigned syntactically
distinct identifiers. In order to facilitate data utilization and
consumption in the Semantic Web, without compromising the
freedom of people to publish their data, one critical problem
is to appropriately interlink such heterogeneous data. This in-
terlinking process is sometimes referred to as Entity Coref-
erence, i.e., finding which identifiers refer to the same real-
world entity. In this paper, we first summarize state-of-the-
art algorithms in detecting such coreference relationships be-
tween ontology instances. We then discuss various techniques
in scaling entity coreference to large-scale datasets. Finally,
we present well-adopted evaluation datasets and metrics, and
compare the performance of the state-of-the-art algorithms on
such datasets.

Introduction
Recently, more and more data is being published in Seman-
tic Web formats (e.g., the Resource Description Framework
(RDF)1 and the Web Ontology Language (OWL)2) by both
academic researchers and industrial organizations. The New
York Times (NYT) has published data in Semantic Web for-
mat, currently consisting of 5,000 people, 1,500 organiza-
tions and 2,000 locations3. The British Broadcasting Corpo-
ration (BBC) has also published their data in RDF, covering
a much more diverse collection of entities4, e.g., persons,
places, events, etc. Thomson Reuters, an intelligent infor-
mation and news provider, also provides free access to an
RDF version of its data5 (3.5 million companies, 1.2 million
equity quotes, and so on).

Using natural language processing and information ex-
traction techniques, academics have also created DBpedia
(Lehmann et al. 2015), an RDFized Wikipedia, that de-
scribes about 3.7 million entities with a total of 400 million
facts. Various efforts are also being investigated for build-
ing and improving a multilingual DBpedia. Freebase (Bol-
lacker et al. 2008), similar to DBpedia but with a much larger

1http://www.w3.org/TR/rdf11-primer
2http://www.w3.org/TR/owl-ref/
3http://data.nytimes.com/
4http://www.bbc.co.uk/things/
5https://permid.org/

amount of 1.7 billion facts, covers entities of various types,
ranging from entertainment, sports to arts, musics, books
and to medicine and biology.

Linked Data (Bizer, Heath, and Berners-Lee 2009) is
a term used to describe best practices for publishing and
connecting data using RDF and Uniform Resource Identi-
fiers (URIs). There are currently about 1,000 datasets in the
Linked Open Data (LOD) cloud, amounting to 74 billion
triples and 250 million links across different datasets6. These
data are often independently generated and distributedly
stored in many locations, and are also heterogeneous and
covering diverse domains, including People, Geographic,
Publications, Media, Social Web, etc.

Although the amount of Semantic Web data is rapidly
growing in many different domains, one observation is that
each real-world entity (e.g., people, organizations, songs,
books, etc.) in the Semantic Web may be described and pub-
lished by many data publishers with syntactically distinct
identifiers. For example, CiteSeer and DBLP assign differ-
ent identifiers to Tim Berners-Lee, the inventor of the World
Wide Web, and describe him in distinct ways with comple-
mentary information. Importantly, such identifiers from dif-
ferent data sources are often not linked to each other and
thus prevent end users from easily obtaining relatively com-
prehensive information for the entities.

In order to help users to better utilize and consume Se-
mantic Web data, in recent years, there has been a great
amount of research efforts in trying to interlink ontology in-
stances from different datasets, i.e., generating equivalence
linkages between ontology instances. In the Semantic Web,
the owl:sameAs predicate is used to connect equivalent on-
tology instances. Such owl:sameAs links help to build an
interlinked Semantic Web and enable users to more easily
obtain relatively comprehensive descriptions of the entities.

This interlinking problem has been studied by Natu-
ral Language Processing researchers as the Entity Coref-
erence or Entity Resolution problems (Bagga and Baldwin
1998), and by Database researchers as the Deduplication
or Record Linkage problems (Elmagarmid, Ipeirotis, and
Verykios 2007). In the Semantic Web, an ontology instance
(e.g., person, location, book, etc.) is identified with a URI
while syntactically distinct URIs could actually represent the

6http://stats.lod2.eu



same real-world entity. We will use the term Entity Corefer-
ence to refer to the process of finding ontology instances that
refer to the same real-world entity throughout this paper.

Producing high quality equivalence relationships for the
current Semantic Web is a non-trivial task. First of all, a
coreference algorithm should be able to generate accurate
and comprehensive equivalence links. Various factors can
impact the coreference results, e.g., misspellings, missing
information, etc. Furthermore, scalability issues need to be
taken into account. Although it might be possible to per-
form manual linking on small datasets, automatic and par-
ticularly scalable approaches will be needed to detect equiv-
alence linkages across large-scale heterogeneous datasets.
Many Linked Data datasets have millions of instances (e.g.,
DBpedia (Lehmann et al. 2015) and Freebase (Bollacker et
al. 2008)), therefore brute-force approaches that carefully
compare every pair of instances will not scale well.

Finally, domain-independence should be another desired
property of coreference algorithms. A domain refers to the
category (e.g., People, Geographic, Publications, Media,
etc.) and the usage (e.g., academic people, politics, etc.) of
the data. In the past, domain-specific techniques have been
able to achieve good coreference results, e.g., by relying on
common name variations to identify coreferent person in-
stances; frameworks have also been designed for manually
specifying rules for linking ontology instances, e.g., Silk
(Volz et al. 2009). However, when considering various do-
mains, humans may lack the knowledge or time to specify
what information to utilize and thus many interesting do-
mains may end up unlinked. Given the diverse domains cov-
ered by Linked Data, coreference algorithms that work well
across different domains are desired.

In this paper, we will discuss the various efforts in the
area of interlinking ontology instances. We will first cat-
egorize and discuss the different approaches in generating
owl:sameAs links. Furthermore, we will discuss datasets and
benchmarks that have been adopted for evaluating such en-
tity coreference systems. We will then present and compare
the results of the state-of-the-art systems. Finally, we will
discuss the potential future directions of entity coreference
in the Semantic Web.

Approaches
Entity coreference has drawn interests from researchers in a
variety of fields. For free text, a key task is to decide which
name mentions actually represent the same real-world en-
tity (Bagga and Baldwin 1998). In databases, entity corefer-
ence is better known as record linkage or deduplication and
is used to detect duplicate database records (Elmagarmid,
Ipeirotis, and Verykios 2007). In the Semantic Web, entity
coreference can happen between a free text mention and
an ontology instance (Hassell, Aleman-Meza, and Arpinar
2006; Mendes et al. 2011) or between ontology instances
themselves. The latter has received more attention from the
research community, since being able to automatically pro-
vide high quality owl:sameAs links between heterogeneous
and large-scale datasets is recognized as one critical step to-
ward building an interlinked data web.

Linking Ontology Instances with String Matching
Various string matching-based approaches have been pro-
posed. LogMap (Jiménez-Ruiz and Grau 2011) computes
the similarity between the “labels” of two ontology instances
and picks the highest similarity between any pair of labels of
the two instances as their final similarity score. Here, “label”
is broadly defined but limited to objects of datatype proper-
ties (i.e., properties whose values are strings). One potential
drawback would be that using the highest similarity score
between values of any manually determined property pairs
as the final similarity measure for two instances could re-
sult in too many false positives, because two non-coreferent
instances might coincidently share highly similar values for
their “labels”, e.g., two people with the name “John Smith”
may not necessarily be coreferent.

RiMOM (Wang et al. 2010) combines manually specified
property weights with string matching techniques for detect-
ing coreference relationships. The core idea is that different
properties may be more or less informative and thus for each
property, a specific weight is assigned. However, when there
are a large number of predicates (e.g., the Billion Triples
Challenge dataset7), manually determining property weights
could be a really time-consuming process or even not feasi-
ble. Differently, SERIMI (Araújo et al. 2015) and EPWNG
(Song and Heflin 2013) automatically compute a discrim-
inability value for each property, i.e., the degree to which the
values for the property are different across instances, captur-
ing the importance of each property for coreference.

Combing Logical Reasoning with String Matching
Instead of only relying on matching literal values, logic
based approaches have also been proposed. ObjectCoref
(Hu, Chen, and Qu 2011) adopts a two-step approach
for detecting coreferent instances. First, it builds an
initial set of coreferent instances via reasoning, i.e.,
by using the formal semantics of OWL properties,
such as owl:sameAs, owl:InverseFunctionalProperty and
owl:FunctionalProperty. In a second step, it learns the dis-
criminability of property pairs based on the initially dis-
covered coreferent instance pairs. The discriminability re-
flects how well each pair of properties can be used to deter-
mine whether two instances are coreferent or not. Similarly,
LN2R (Saı̈s, Pernelle, and Rousset 2009), CODI (Noess-
ner et al. 2010) and ASMOV (Jean-Mary, Shironoshita, and
Kabuka 2009) also combine reasoning and string matching
techniques.

One disadvantage of reasoning based approaches is that
they highly depend on the correct expressions of the ontolo-
gies. For example, as reported by ASMOV researchers, in
one dataset, the surname property was declared to be func-
tional, however it is possible that a person may have two
surnames: one prior to marriage and one after. Another po-
tential weakness of logic-based approaches is that they may
not be applicable to non-Semantic Web data, since there are
no formal semantics. For instance, for relational databases
and XML/CSV data, we do not have the properties listed

7http://km.aifb.kit.edu/projects/btc-2012/



above (e.g., owl:FunctionalProperty), thus limiting the ben-
efits of the logic layer. Planning-based approaches are also
proposed to determine the optimal linking rules for link dis-
covery (Ngomo 2014).

Ontology Instance Matching with Crowdsourcing

The approaches discussed above are all automatic in the
sense that except for having to manually specify the weights
of different types of triples in some algorithms, the coref-
erence results are achieved by an automatic system without
human intervention. However, during the past years, several
algorithms that consider human involvement for improving
coreference results have been proposed (Cheng, Xu, and Qu
2015; Demartini, Difallah, and Cudré-Mauroux 2013). Typi-
cally, automatically generated results are published on some
crowdsourcing platforms as evaluation tasks, such as Ama-
zon Mechanical Turk8 and CrowdFlower9, and humans can
then provide their judgments on the tasks. Their responses
can then be aggregated, combined with similarity scores or
utilized for active learning (Isele and Bizer 2013).

One potential risk of using crowdsourcing is that many of
the evaluators are simply doing the tasks for money and are
often times not spending sufficient time to really understand
the tasks. This will then cause noisy results. To alleviate this
issue, some crowdsourcing services (e.g., Amazon Mechan-
ical Turk) try to identify high-quality evaluators. Also, re-
searchers themselves may also intersperse tasks with known
answers to identify reliable evaluators.

Scaling Entity Coreference Systems

Scalability has become an important issue for entity coref-
erence systems. Blocking is one method for subdividing en-
tities into mutually exclusive blocks and only those within
the same block will be compared. Instead of finding mutu-
ally exclusive blocks, blocking is also referred to as finding
a set of candidate pairs of mentions that could be coreferent
(Michelson and Knoblock 2006; Song and Heflin 2011).

Manually Identifying Blocking Key Domain expertise
has been widely adopted for blocking. Best Five (Winkler
2005) is a set of manually identified rules for matching cen-
sus data. Sorted Neighborhood (SN) (Hernández and Stolfo
1995) sorts all entities on one or more key values and com-
pares identifiers in a fixed-sized window. Adaptive Sorted
Neighborhood (ASN) (Yan et al. 2007) sorts records based
upon a manually identified key and learns dynamically sized
blocks for each record. The authors claimed that changing to
different keys didn’t affect the results but provided no details
on how they reached this conclusion.

Although keys selected by domain experts can be very ef-
fective in many scenarios, the required expertise may not be
available for various domains. Moreover, even when people
have the required expertise, they may lack the time to actu-
ally write down the rules.

8https://www.mturk.com/mturk/welcome
9http://crowdflower.com/

Automatic Blocking Key Selection BSL (Michelson and
Knoblock 2006) adopted supervised learning to learn a
blocking scheme: a disjunction of conjunctions of (method,
attribute) pairs. For example, a “method” could be “comput-
ing the Jaccard similarity between two attribute values”. It
learns one conjunction each time to reduce as many pairs as
possible; by running the learning process iteratively, more
conjunctions would be obtained in order to increase cover-
age on true matches. However, supervised approaches re-
quire sufficient training data that may not always be avail-
able. For example, when BSL was used on the Restaurant
dataset10, a reduction of training set data by 80% led to a
4.68% reduction in true matches identified. Even more im-
portantly, BSL may not scale well to large datasets, since
essentially it needs to try out every possible combination of
(method, attribute) pairs and picks the best one (in terms of
pair reduction and coverage of true matches) at each learn-
ing iteration. In order to reduce the needs of training data,
Cao et. al. (2011) proposed a similar algorithm that utilizes
both labeled and unlabeled data for learning the blocking
scheme; however the supervised nature of their method still
requires a certain amount of available groundtruth.

Differently, Adaptive Filtering (Gu and Baxter 2004) is
unsupervised and it filters record pairs by computing their
character bigram similarity. Marlin (Bilenko and Mooney
2003) uses an unnormalized Jaccard similarity on the tokens
between attributes by setting a threshold to 1, i.e., finding an
identical token between the attributes. Although it was able
to cover all true matches on some datasets, it only reduced
the pairs to consider by 55.35%. If we apply this approach to
datasets with millions of instances (> 1012 candidate pairs),
this reduction is unlikely to be significant enough.

DisNGram (Song and Heflin 2011) learns the blocking
key for a selected set of entity categories by iteratively com-
bining the top-key (ranked automatically by a metric) with
other attributes. Differently, TYPiMatch (Ma and Tran 2013)
learns blocking keys for each specific subtype. For exam-
ple, instead of learning a general key for the class “Person”,
it learns separate keys for subtypes, such as “Student” and
“Professor”. KD2R (Pernelle, Saı̈s, and Symeonidou 2013)
and SAKey (Symeonidou et al. 2014) are two other unsuper-
vised methods for discovering keys in the Semantic Web.
Different from BSL (Michelson and Knoblock 2006), both
systems discover blocking keys without having to consider
all possible combinations of the properties.

Index-based Blocking Inverted indexes are commonly
used for blocking or finding similar strings. In general, these
approaches first index the input values to look up initial can-
didates, which are then further refined to produce the final
candidate pairs. PPJoin+ (Xiao et al. 2011), RiMOM (Wang
et al. 2010), and DisNGram (Song and Heflin 2011) index on
tokens while LogMap (Jiménez-Ruiz and Grau 2011) also
indexes their lexical variations (e.g., using WordNet); differ-
ently, EdJoin (Xiao, Wang, and Lin 2008) and IndexChunk
(Qin et al. 2011) index on character n-grams. In order to
reduce index size, PPJoin+, EdJoin, and IndexChunk only
index a prefix of a given string and DisNGram automati-

10http://www.cs.utexas.edu/users/ml/riddle/data.html



cally selects the attributes whose entire values are indexed.
Rather than only indexing the strings, Ioannou et al. (2010)
builds an inverted index by hashing a neighborhood RDF
graph of an ontology instance. Furthermore, PPJoin+ and
IndexChunk consider the position of the matching tokens/n-
grams for filtering while EdJoin also takes mismatching n-
grams into account. Instead of performing exact matching,
FastJoin (Wang, Li, and Feng 2014) adopts fuzzy matching
by combing token and character-based similarity. In addi-
tion to inverted indices, other types of indices have also been
adopted, e.g., B-Tree and Trie (Jiang et al. 2014).

Evaluating Ontology Instance Matching
Here, we will introduce the well-adopted metrics and
datasets for evaluating ontology instance matching systems.

Evaluation Metrics
Three metrics have been well adopted for evaluating on-
tology instance matching systems (Euzenat et al. 2010;
Hu, Chen, and Qu 2011; Song and Heflin 2013): Precision
(Pt), Recall (Rt) and F1-score (F1t) as computed in Equa-
tion 1. Precision is measured as the number of correctly de-
tected coreferent pairs divided by the total number of de-
tected pairs; Recall is defined as the number of correctly de-
tected coreferent pairs divided by the total number of coref-
erent pairs given a set of ontology instances; F1-score gives
a comprehensive view of how well a system performs:

Pt =
|correctly detected|
|all detected|

, Rt =
|correctly detected|
|true matches|

,

F1t = 2 ∗
Pt ∗ Rt

Pt + Rt

(1)

where t represents threshold in all the above three equations.
To evaluate blocking techniques, three traditional metrics

have been frequently used (Yan et al. 2007; Michelson and
Knoblock 2006; Song and Heflin 2011; Ngomo 2012): Pair-
wise Completeness (PC), Reduction Ratio (RR) and F1-
scorecs (Fcs) as shown in Equation 2. PC and RR evaluate
how many true positives are retained by a blocking algo-
rithm and the degree to which it reduces the number of pair-
wise comparisons needed respectively; Fcs is the F1-score
of PC and RR:

PC =
|true matches in candidate set|

|true matches|

RR = 1−
|candidate set|

N ∗M
,Fcs = 2 ∗

PC ∗ RR

PC + RR
(2)

where N and M are the sizes of two instance sets that are
matched to one another. Blocking techniques should have
a high PC so that most of the true matches (coreferent in-
stance pairs) will be included in the candidate set. Addition-
ally, a high RR is also important, since a blocking algorithm
also needs to be able to reduce as many instance pairs as pos-
sible to save the overall computational cost.

Note that according to the definition of RR, a large change
in the size of the candidate set may only be reflected by a
small change in the RR due to its large denominator. There-
fore, there is the need to adopt new evaluation methods and
metrics to perform a more fair comparison between different
systems on very large datasets. One option would be to ap-
ply an actual coreference algorithm to the selected candidate

pairs to: 1) measure the runtime of both blocking and entity
coreference; 2) check how the missing true matches can af-
fect the final coreference results. It is possible that even if
those missing pairs were selected, the coreference algorithm
would still not be able to detect them. Furthermore, in order
to cover the last few missing true matches, more false pos-
itives could be selected, which would potentially add more
computational complexity to the entire process.

Evaluation Datasets
First of all, the Ontology Alignment Evaluation Initiative
(OAEI)11 includes an instance matching track from 2009
that provides several benchmark datasets. On one hand, syn-
thetic datasets are provided each year, which are generated
by modifying one data source according to various criteria,
e.g., data transformation and deletion. On the other hand,
some real-world tasks (e.g., linking the New York Times
data to DBpedia) are also provided. Furthermore, in our
prior work, two datasets: RKB12 and SWAT13, were adopted;
both datasets contain millions of instances, which is reason-
able to demonstrate the scalability of linking algorithms.

Although the OAEI benchmark has been well-adopted,
the main issues are the size of the provided datasets and
their number of limited domains. In general, only a few
thousand ontology instances are involved in a benchmark
dataset, which may not be ideal for evaluating the scala-
bility of coreference algorithms. Also, one common issue
of OAEI, RKB, and SWAT is that the data is often of lim-
ited domains (e.g., people, locations, organizations, etc.) and
thus may not be broad enough to demonstrate the domain-
independence of a coreference algorithm.

Finally, we introduce the Billion Triples Challenge (BTC)
dataset. The BTC datasets were crawled from the web us-
ing a few seeded URIs. Take the BTC2012 dataset as an ex-
ample (Table 1). First of all, there are 57K predicates and

Number of Triples 1.4 Billion
Number of Instances 183 Million
Number of Predicates 57,000

Number of Classes 296,000

Table 1: Billion Triples Challenge 2012 Dataset Statistics

296K classes in this dataset, thus making the BTC dataset
appropriate for testing the domain-independence of an entity
coreference algorithm. Furthermore, given the amount of the
instances in the dataset, it provides a perfect testbed to study
the scalability of coreference algorithms. Neither manually
linking nor brute-force approaches will work at this scale.

When adopting real-word datasets for evaluation, due
to the low quality of existing owl:sameAs links in Linked
Data (Halpin et al. 2010), it would be necessary to check
the quality of the groundtruth, e.g., by performing man-
ual verification on a sample of the provided groundtruth.
Also, since it could be very difficult to obtain perfect

11http://oaei.ontologymatching.org/
12http://www.rkbexplorer.com/data/
13http://swat.cse.lehigh.edu/resources/data/



groundtruth for large real-world datasets, the metric Relative
Recall (relR) may be adopted to compare different systems:
correctly detected ontology instance pairs from one system
correctly detected ontology instance pairs from all systems .

In addition to datasets, a few benchmarking tools have
also been proposed (Saveta et al. 2015; Ferrara et al. 2011).
In general, such tools take an ontology instance as input and
perform certain modifications to generate a coreferent in-
stance. Such modifications may include value transforma-
tion (e.g., token deletion and stemming), structural transfor-
mation (e.g., merging the values of two attributes into one),
and semantic transformation (e.g., replacing a property with
an equivalent one: “first name” and “given name”). Such
benchmarking tools are typically configurable and can be
used to generate large-scale datasets as well.

Evaluation Results
First of all, in Table 2, we compare the state-of-the-art al-
gorithms on the Person-Restaurant datasets from OAEI (Eu-
zenat et al. 2010). Person1 and Person2 are two synthetic
datasets where coreferent records are generated by modify-
ing the original records; Restaurant is a real-world dataset,
matching instances describing restaurants from Fodors (331
instances) to Zagat (533 instances) with 112 duplicates.

In general, the majority of the compared systems achieve
perfect results on Person1, while we observe significant per-
formance drop for many of the systems on Person2. This
is due to how coreferent instances were generated in these
two datasets. For Person1, a coreferent instance is created by
making only one modification to the original instance; while
for Person2, a maximum of 3 modifications per attribute and
a maximum of total 10 modifications for all attribute values
are allowed. Rather than only using the immediate triples
of an ontology instance, several of the best-performing sys-
tems, including EPWNG, SiGMa and MA, also utilize values
whose distance from the instance in the RDF graph is greater
than one. Such distant triples are particularly helpful when
there are not sufficient immediate literal triples. Although
SiGMa and MA generally outperform the other systems on
all three datasets, both systems assume one-to-one mappings
between instances of two datasets, which may not hold in
many scenarios.

In Table 3, we also compare the state-of-the-art block-
ing algorithms on 100K instances from RKB and SWAT.
Generally, DisNGram was able to achieve better results than
the other systems, particularly for the overall runtime. This
is primarily due to the fact that DisNGram only performs
blocking on automatically selected attribute values; com-
bined with effective character n-gram pruning, it was able
to avoid producing too many candidate instance pairs.

Furthermore, Table 4 shows the actual coreference results
on 50K and 100K randomly selected instances from BTC.
The BTC dataset covers more domains and thus is a per-
fect testbed for testing the domain-independence of corefer-
ence algorithms. We compare SERIMI (Araújo et al. 2015),
LogMap (Jiménez-Ruiz and Grau 2011), EPWNG (Song and
Heflin 2013) and their variations. For LogMap DisNGram,
we replaced LogMap’s blocking module with the DisNGram
algorithm (Song and Heflin 2011). EPWNG EdJoin and

Dataset System P R F1

Person1

LN2R (Saı̈s, Pernelle, and Rousset 2009) 1.00 1.00 1.00
ASMOV (Jean-Mary, Shironoshita, and Kabuka 2009) 1.00 1.00 1.00
CODI (Noessner et al. 2010) 0.87 0.96 0.91
RiMOM (Wang et al. 2010) 1.00 1.00 1.00
ObjectCoref (Hu, Chen, and Qu 2011) 1.00 0.99 0.99
PARIS (Suchanek, Abiteboul, and Senellart 2011) 1.00 1.00 1.00
SiGMa (Lacoste-Julien et al. 2013) 1.00 1.00 1.00
EPWNG (Song and Heflin 2013) 1.00 1.00 1.00
MA (Xue and Wang 2015) 1.00 1.00 1.00

Person2

LN2R (Saı̈s, Pernelle, and Rousset 2009) 0.99 0.88 0.93
ASMOV (Jean-Mary, Shironoshita, and Kabuka 2009) 0.70 0.24 0.35
CODI (Noessner et al. 2010) 0.83 0.22 0.36
RiMOM (Wang et al. 2010) 0.95 0.99 0.97
ObjectCoref (Hu, Chen, and Qu 2011) 1.00 0.90 0.95
SiGMa (Lacoste-Julien et al. 2013) 1.00 1.00 1.00
EPWNG (Song and Heflin 2013) 0.99 0.99 0.99
MA (Xue and Wang 2015) 1.00 1.00 1.00

Restaurant

LN2R (Saı̈s, Pernelle, and Rousset 2009) 0.76 0.75 0.75
ASMOV (Jean-Mary, Shironoshita, and Kabuka 2009) 0.70 0.70 0.70
CODI (Noessner et al. 2010) 0.71 0.72 0.72
RiMOM (Wang et al. 2010) 0.86 0.77 0.81
ObjectCoref (Hu, Chen, and Qu 2011) 0.58 1.00 0.73
PARIS (Suchanek, Abiteboul, and Senellart 2011) 0.95 0.88 0.91
SiGMa (Lacoste-Julien et al. 2013) 0.98 0.96 0.97
EPWNG (Song and Heflin 2013) 0.75 0.99 0.85
MA (Xue and Wang 2015) N/A N/A 0.98

Table 2: Performance Comparison on the OAEI PR Datasets. P : Precision; R:
Recall; F1: F1-score between P and R

Dataset System Fcs F1 T

RKB

DisNGram (Song and Heflin 2011) 0.9968 0.9306 9.98

Person

FastJoin (Wang, Li, and Feng 2014) 0.9940 0.9239 21.86
PPJoin+ (Xiao et al. 2011) 0.9939 0.9240 29.68
EdJoin (Xiao, Wang, and Lin 2008) 0.9957 0.9283 20.90

SWAT

DisNGram (Song and Heflin 2011) 0.9932 0.9490 9.03

Person

FastJoin (Wang, Li, and Feng 2014) 0.9954 0.9499 23.56
PPJoin+ (Xiao et al. 2011) 0.9952 0.9499 21.93
EdJoin (Xiao, Wang, and Lin 2008) 0.9959 0.9494 19.46

RKB

DisNGram (Song and Heflin 2011) 0.9999 0.9974 20.76

Publication

FastJoin (Wang, Li, and Feng 2014) 0.9971 0.9969 308.25
PPJoin+ (Xiao et al. 2011) 0.9967 0.9966 239.14
EdJoin (Xiao, Wang, and Lin 2008) 0.9974 0.9966 54.76

Table 3: Blocking and Coreference Results on RKB and SWAT. Fcs: the F1-score
between PC and RR; F1: final coreference F1-score; T (seconds): total runtime

System
50K 100K

F1 T F1 T
LogMap (Jiménez-Ruiz and Grau 2011) 0.33 1,496 N/A N/A
SERIMI (Araújo et al. 2015) 0.59 37,639 N/A N/A
LogMap DisNGram 0.76 990 0.75 2,104
EPWNG EdJoin 0.68 2,019 0.68 3,971
EPWNG DisNGram 0.88 2,074 0.88 2,960

Table 4: Final Coreference Results on BTC. F1: Final Coreference F1-score; T
(seconds): Overall runtime of both blocking and coreference

EPWNG DisNGram utilize EdJoin (Xiao, Wang, and Lin
2008) and DisNGram for blocking respectively; both sys-
tems adopt the EPWNG algorithm for the actual coreference.



Figure 1: BTC Blocking Scalability. Bars are candidate size; Lines are runtime

Finally, in Figure 1, we compare DisNGram and EdJoin
(the best blocking systems from Table 3 in terms of Fcs and
T ) on up to 2 million instances from BTC. Here, DisNGram
selects fewer candidates and runs faster than EdJoin does.

Conclusion
The volume of Semantic Web data is rapidly growing in a
variety of domains. However, unless this data is integrated
together, we will not be able to exploit and demonstrate its
real value. In this short survey, we summarize the numerous
research efforts in recent years that have been devoted to
this ontology instance matching problem with the goal of
building an interlinked Semantic Web.

In order to handle large-scale datasets, blocking tech-
niques have drawn great interests from the community. To
learn the blocking keys (a set of attributes), approaches that
do not have to consider all combinations of attributes are
preferred. Next, indexes are often created on the values of
the keys for look-up, and such look-up results are generally
further refined with string matching on the token or charac-
ter level to produce the final candidates. Through evaluation,
some of the discussed algorithms have demonstrated orders
of magnitude faster processing capability than other state-
of-the-art systems on large datasets. Such speedup is crucial
for integrating large-scale datasets in the Big Data era.

As for the actual entity coreference, state-of-the-art sys-
tems often times apply weight to different attributes, trying
to capture their importance in differentiating the ontology
instances. Furthermore, rather than only using immediate
triples of the ontology instances, a neighborhood graph that
consists of distant triples of the instances is also considered
in several of the best-performing algorithms.

In future work, collective entity coreference may be one
interesting idea. Rather than detecting coreferent instances
of each individual domain, one might imagine how would
the coreference results of one type of instances impact the
others. For academic datasets, suppose we first find coref-
erent publications, could we then use this information to
improve coreference of authors, especially those that do
not have discriminative names? Also, could we automat-
ically determine which domains should be processed first
so that the other domains could benefit most? Although
similar ideas have been proposed before (Bhattacharya and

Getoor 2007), more efforts are needed to generalize such ap-
proaches to various domains.

Furthermore, more research is needed to handle data that
lacks discriminative labels (e.g., people names and publi-
cation titles). One preliminary idea is to combine values
from multiple properties, expecting the combined values to
be more discriminating than that of any individual prop-
erty. Moreover, instead of performing exact index look-up,
fuzzy matching could be explored. Also, architecturally, dis-
tributed computing could be employed to speed up both the
blocking and the overall coreference process.
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