
Integrating HTN Planning and Semantic Web Ontologies for
Efficient Information Integration

Jeff Heflin and Hector Muñoz-Avila

Dept. of Computer Science & Engineering
Lehigh University

19 Memorial Drive West
Bethlehem, PA 18015

{heflin, munoz}@cs.lehigh.edu

Technical Report: LU-CSE-04-002

Abstract
We integrate HTN planning and Semantic Web ontologies
for efficient information integration. HTNs is a hierarchical
plan representation that refines high-level tasks into simpler
tasks. In the context of information integration, high-level
tasks indicate complex queries whereas low-level tasks
indicate concrete information-gathering actions such as
requests to an information source. Semantic Web
ontologies allow software agents to intelligently process
and integrate information in distributed and heterogeneous
environments such as the world wide web. The integration
of HTNs and Semantic Web ontologies allow agents to
answer complex queries by processing and integrating
information in such environments. We also propose to use
local closed world (LCW) information to assist these
agents. LCW information can be obtained by accessing
sources that are described in a Semantic Web language
with LCW extensions, or by executing operators that
provide exhaustive information. We demonstrate how the
Semantic Web language SHOE can be augmented with the
ability to state LCW information.

1 Introduction
The World Wide Web has transformed society, changing
the way people communicate, learn, and conduct business.
However, the dramatic growth of the Web over recent
years has made it increasingly difficult for people to take
full advantage of its capabilities. One solution is to build
sophisticated intelligent agents, programs that can
autonomously take actions in order to achieve their
owners’ goals. These agents could process and integrate
the multitude of data available, filtering information for
users or acting on their behalf. The Semantic Web
(Berners-Lee, Hendler, and Lasilla 2001) is an approach to
making the Web’s information accessible to intelligent
agents that does not require them to understand natural
language. Instead, the Semantic Web encodes the content
of pages in a machine-readable format and explicitly links
this content to machine-understandable semantics in the
form of ontologies.

Agents on the Semantic Web will need to plan how to
achieve their goals and must use heterogeneous web
resources in order to make their decisions. However, most
planning methodologies assume that the planner has
complete knowledge about the state of the world. On the
Web, this is simply impossible: the Web is too large and
changes too quickly for any agent to reasonably assume

that it has complete knowledge. However, with an open-
world, an agent may spend an unbounded amount of time
attempting to find an answer to a query when none exists.
Golden, Etzioni, and Weld (1994) have proposed that local
closed world information (LCW) can be used to handle
such problems in incomplete information environments.
However, this approach has never been directly applied to
the Semantic Web. In this paper, we make the following
contributions:

1. We integrate HTN planning and Semantic Web
ontologies for defining agents capable of solving
complex information integration tasks.

2. We extended the Semantic Web language SHOE
that allow Web documents and other resources to
express LCW information. We show how LCW
information benefits the agents defined in 1.

The paper continues as follows: in the next section we
provide a quick overview of the semantic web and LCW.
Next we discuss how to enhance LCW on the Semantic
Web language SHOE. Next we described HTN planning
and how to define agents that integrate HTN planning and
the SHOE language. We also discuss how these agents
benefit from the SHOE LCW statements. Finally we
discuss related work and make final remarks.

2 Background
This work builds on research in the Semantic Web and
research into the use of LCW information. We will now
briefly discuss each of these areas.

2.1 The Semantic Web
The goal of the Semantic Web is to automate machine
processing of web documents by making their meanings
explicit (Berners-Lee, Hendler, and Lasilla 2001).
Semantic web languages do this by allowing users to
create ontologies, which specify standard terms and
machine-readable definitions. Semantic web documents
then commit to one or more ontologies, thus stating which
sets of definitions are applicable. Over the last ten years,
knowledge representation researchers have studied the use
of ontologies for sharing and reusing knowledge (Noy and
Hafner 1997). Although there is some disagreement as to
what comprises an ontology, most ontologies include a

taxonomy of terms (e.g., a Car is a Vehicle), and many
ontology languages allow additional definitions using
some form of a logic. Guarino (1998) has defined an
ontology as “a logical theory that accounts for the intended
meaning of a formal vocabulary.” A common feature in
ontology languages is the ability to extend preexisting
ontologies. Thus, users can gain the interoperability
benefits of sharing terminology where possible, but can
also customize ontologies to include domain specific
information.

A number of Semantic Web languages have been
proposed, and the W3C is in the process of completing an
international standard called OWL (Smith, Welty, and
McGuinness 2003). However, for reasons we explain later,
this paper will focus on the SHOE language (Luke et al.
1997, Heflin 2001). Like OWL, SHOE has ontologies
which provide definitions of classes and properties (called
categories and relations in SHOE). However, OWL is
based on description logic while SHOE is based on
datalog, a data model commonly used for deductive
databases. The syntax of datalog is basically Prolog
without function symbols, but unlike Prolog, no control
flow is implied by the ordering of statements and atoms.
SHOE does not have as rich expressions for defining
classes as OWL, but does have the ability to express
arbitrary Horn clauses, something that OWL lacks. SHOE
data consists of instances that can be found in web
documents. These instances commit to one or more SHOE
ontologies. The data can specify categories (classes) of
which instances are members and relationships between
instances (predicates). The complete specification of the
language is available on the Web (Luke and Heflin 2000).
In this paper, our SHOE examples will use SHOE’s XML
syntax.

2.2 Local Closed World Information
The closed-world assumption (CWA) is used in the
semantics of programming languages like Prolog and most
databases. It basically states that if a fact cannot be proven
to be true, then the fact is assumed to be false. This
assumption is useful in that it allows additional inferences
to be drawn from the absence of information. However,
this assumption is often inappropriate because knowledge
may be incomplete. Local closed-world (LCW)
information is an approach to this problem in which
closed-world information can be obtained on subsets of the
information that are known to be complete, while still
allowing other information to be treated as unknown
(Golden, Etzioni and Weld 1994). LCW information is
given as meta-level sentences of the form LCW(). The
semantics of such a sentence is that for all variable
substitutions , if the ground sentence  is true in the
world then  is represented in the agent’s knowledge
base. Any matching ground sentence that is not in the
knowledge base is known to be false.

Golden, Etzioni and Weld originally developed LCW
in the context of agent planning, and used it to describe the
effects of sensing operations that return exhaustive
information. Levy (1996) extended this formalism to deal
with obtaining complete answers from partial databases,
that is, databases that have incomplete information.
Various work in information integration has followed, with
an emphasis on using LCW to generate efficient
information gathering plans (Friedman and Weld 1997;
Duschka 1997; Lambrecht, Kambhampati, and
Gnanaprakasam 1999). However, this work assumes a
priori knowledge of the local completeness information for
each information source. These systems typically have a
small number of predetermined information sources, and
in such a system, this information could be provided by an
administrator whenever a new source was added.
However, if this work is to be applied to the Semantic
Web, then one must realize that there are potentially
millions of information sources, since each web page could
be considered a data source. In the next section, we will
discuss how Semantic Web languages can be extended to
allow web resources to provide LCW information
regarding their contents.

3 LCW on the Semantic Web
The closed-world assumption is inappropriate for the
Semantic Web due to its size and rate of change. Since the
Web, is so large, no single agent could expect to have
complete knowledge of its contents, and thus an
assumption that any unknown facts must be false will often
be mistaken. However, if an open-world is assumed, then
an agent’s search is unbounded, because if it has not found
an answer, it has no way of knowing if the answer may be
available elsewhere if it simply continues its search. In this
section we propose how two Semantic Web languages can
be extended to use LCW information.

In the formulation by Etzioni, Golden, and Weld
(1997), LCW sentences are restricted to positive
conjunctions of logical atoms that include one or more
variables. Descriptions logics (and thus OWL) cannot
represent all of these sentences. However, SHOE has a
more natural fit, since like most information integration
approaches, SHOE is based on datalog.

We can add LCW information to SHOE by
introducing a lcw element to instances. That is, a particular
SHOE instance can claim to have complete knowledge
over some set of information. As with the formulation by
Etzioni, Golden, and Weld (1997), we will restrict SHOE
LCW sentences to positive conjunctions. In SHOE syntax,
this essentially means the child elements of the lcw
element are an arbitrary number of category and relation
elements. We call the language with this construct SHOE-
LCW.

As an example, the LCW statement:
LCW(Flight(x) ̂destination(x,y) ̂UsCity(y))
can be represented in SHOE-LCW as follows:

<lcw>
<category name=”faa.Flight”

 usage=”var” for=”x” />
<relation name=”faa.destination”>
<arg pos=”1” usage=”var” value=”x” />
<arg pos=”2” value=”var” value=”y” />

</relation>
<category name=”faa.UsCity”

 usage=”var” for=”y” />
</lcw>

The use of relations allow SHOE to naturally capture
statements such as LCW(prop(x,c)) and LCW(prop(c,x)).
In each case, the lcw element contains a single relation
element with one argument that is a constant and one
argument that is a variable.

The semantics of SHOE-LCW is based on the
semantics of SHOE (Heflin 2001), with one modification
to handle the lcw element. This element can be expressed
as a standard LCW statement by representing each
category as a unary predicate, and representing each n-ary
relation as an n-ary predicate. The conjunction of these
sentences forms the LCW sentence. The semantics of this
sentence are similar to those described in the previous
section. The instance element in SHOE represents a web
page whose content is described by the SHOE tags.
Typically this instance is the page in which the tags occur,
but may be another web resource.

Note that LCW adds implicit negation to SHOE,
introducing the possibility of logical inconsistency. That is,
if one source claims to have LCW information about a
relation, and another source contains an instance of the
relation that is not in the former, then the two sources
contradict each other. Handling inconsistency on the
Semantic Web is still an unsolved problem, so we will
assume that information sources only state LCW
information when they actually have local completeness
information, thereby allowing us to ignore any resources
that contradict it.

4 LCW for Agent Planning
In this section we are going to explain how the LCW
statements added to the SHOE language can be used for
agent planning on the Semantic Web. First we are going to
describe the planning formalism known as Ordered Task
Decomposition (OTD) (Nau et al, 1999). We have chosen
to use OTD planning for two main reasons: first, HTN
planning, of which OTD is an special form, has been
shown to be strictly more expressive than STRIPS
planning, of which partial-order planning is an special
form (Erol, Hendler, and Nau 1994). Second, hierarchical
task decomposition has been shown to be useful for many
real-world domains (Nau et al. 1998).

4.1 Ordered Task Decomposition
An HTN (hierarchical task network) is a set of tasks and
their ordering relations, denoted as N=({t1,…,tm},<)

(m0), where < is a binary relation expressing temporal
constraints between tasks. Decomposable tasks are called
compound, while non-decomposable tasks are called
primitive.

A domain theory consists of methods and operators
for generating plans. A method is an expression of the
form M=(h,P,ST), where h (the method's head) is a
compound task, P is a set of preconditions, and ST is the
set of M's (children) subtasks. M is applicable to a task t,
relative to a state S (a set of ground atoms), iff
matches(h,t,S) (i.e., h and t have the same predicate and
arity, and a consistent set of bindings Θ exists that maps
variables to values such that all terms in h match their
corresponding ground terms in t) and the preconditions P
are satisfied in S (i.e., there exists a consistent extension of
Θ, named Θ', such that  pP {pΘ'S}), in which case
M(t,S)=ST Θ'.

An operator is an expression of the form
O=(h,P,aL,dL), where h (the operator's head) is a
primitive task, P is a set of preconditions, and aL and dL
are the so-called add- and delete-lists. These lists define
how the operator's application transforms the current state
S: every element in the add-list is added to S and every
element in the delete-list is removed from S. An operator O
is applicable to a task t, relative to a state S, iff
matches(h,t,S) and the preconditions P are satisfied in S.

A planning problem is a triple (T,S,D), where T is a
set of tasks, S is a state, and D is a domain theory. A plan
is the collection of primitive tasks obtained by
decomposing all compound tasks in a planning problem
(T,S,D).

At any point during the Ordered Task Decomposition
process (OTD), a task list T’ is being refined relative to a
state S and a domain theory D. Initially, T’ is the set of
tasks T in the planning problem (T,S,D). In an ordered
task decomposition process, the tasks must be totally
ordered (i.e., the < relation on HTNs is a total order).
During the OTD process the partial solution plan p being
derived (i.e., the primitive tasks in T’) is maintained.
Initially p is empty. The OTD process selects the first task
t in T’ and continues as follows:

 If t is primitive and has an applicable operator O, then O
is applied to t, S is updated accordingly, t is removed
from T’ and added to the end of p.

 Else if t is compound and has an applicable method M
(that has not yet been applied to t), then M is applied,
which replaces t in T’ with M’s subtasks.

 Else if T’ is not empty, then backtracking occurs.
 Else the process fails.

The OTD process terminates when T’ is empty, in
which case p is the solution, or when trying to backtrack
on a compound task t whose applicable methods have been
exhausted. The OTD process was first implemented in the
SHOP planning system (Nau et al., 1999). A variant was

created that relaxes the condition requiring the tasks to be
totally order (Nau et al., 2001) but for the sake of
simplicity we'll concentrate on the original assumption that
the tasks are totally ordered.

4.2 LCW Statements in Planning
LCW statements are meta-knowledge about the available
facts. There are two sources for LCW statements during
planning:

- LCW information is provided explicitly. Explicit
LCW information could be part of the agent’s
background knowledge or may be provided by the
information sources. The later means that the
information sources being accessed know in advance
that the information is locally closed. As an example,
American Airlines has complete information about all
American Airlines flights.

- LCW is inferred as a result of an action. This
means that the execution an action yields local closed-
world information. As an example, the UNIX
command ls, when executed in a directory /dir, yields
complete information about the files contained and not
contained in /dir.

The first source of LCW information has been explored in
work on information integration, where the information is
used to generate efficient information gathering plans
(Levy 1996, Friedman and Weld 1997, Duschka 1997). In
our framework, this information is provided by the LCW
statements in the SHOE or the DAML extensions
discussed in the previous sections. The second source of
LCW was proposed in (Golden, Etzioni, and Weld 1994).
It reflects the fact that it is typically assumed that all
knowledge about changes in the world is modeled in
actions known by the planner.

To include these two sources of planning within OTD,
we need to (1) cope with the problem of distributed state
information (classical planners assume a centralized state
that contains all known facts), (2) extend the way methods
and (3) operators are used.

4.3 OTD Planning with the Semantic Web
During the OTD decomposition process queries to external
information sources need to be performed to evaluate if the
preconditions can be satisfied and to take into account
LCW statements that had been gathered so far. To handle
this situation we created two additional entities external to
the OTD Plan Generator: The Knowledge Base (KB) and
the Semantic Web Mediator (see Figure 1). The former
maintains known facts and LCW statements and the latter
mediates between the OTD Plan Generator and the
external information sources by accessing and interpreting
relevant Semantic Web documents.

The Semantic Web Mediator is based on the concept
of mediators proposed by Wiederhold (1992); it is a

system that is capable of integrating multiple sources in
order to answer questions for another system. Its main
function is to evaluate the OTD Plan Generator’s
preconditions by accessing Semantic Web resources. To
accomplish this task the Semantic Web Mediator uses and
maintains information about remote sites available, access
information, and known ontologies in the KB.

Figure 1

The KB maintains three forms of knowledge:

 Facts that have been gathered so far either through
actions of the OTD Plan Generator or through remote
access by the Semantic Web Mediator

 LCW statements yielded by the OTD Plan Generator or
collected by the Semantic Web Mediator

 Summary of information source contents

It is important to notice that changes resulting from actions
taken by the OTD Plan Generator are recorded in the KB
rather than in the actual sources. Consider an action to
reserve a seat in a flight that the mediator discovered was
free. In the KB we keep track of this action as if the seat
was reserved without actually going to the information
source and reserving it. We choose this approach because
backtracking may occur if we are not be able to satisfy the
conditions for other actions later on. Such situations would
require the costly process of reaccessing sources in order
to tell them to undo previous actions. Thus, we continue
planning and once we complete the plan we perform the
execution.

For this approach to work we are making the
assumption that the content of the information sources
(particularly with regards to LCW information) does not
change during the planning time. This is a typical
assumption made by other systems planning with external
information sources (e.g., (Golden, Etzioni, and Weld
1994)) with the rationale being that the small amount of
time taken to complete the plan makes it unlikely that this

information would change. However, we do acknowledge
that in the context of the Semantic Web the validity of this
assumption may be questionable and we are currently
investigating solutions to the problem.

4.4 Precondition Evaluation
When a precondition p is evaluated, four steps need to be
performed:

1. Determine if p can be satisfied or not by accessing the
KB’s facts

2. If p can be satisfied, the variable bindings satisfying p
are returned.

3. If p cannot be satisfied, the KB’s LCW statements are
accessed to determine if complete information about p
is contained. If this is the case, p is false

4. If p cannot be satisfied and there is no complete
information about p in the KB’s LCW statements, p is
unknown. In this case, p is passed to the Semantic
Web Mediator.

The first two steps mimic the standard precondition
evaluation; in OTD the current state is locally maintained
and to determine if the preconditions are satisfied or not,
one looks if p is matched in the current state. The third and
fourth steps are necessary to handle LCW information. An
example of such a situation can be illustrated with the
following method, which is the knowledge unit describing
the conditions (called preconditions) under which a task
can be decomposed into subtasks:

 Task:
 Get a direct flight Ticket from start to destination
at date
 Preconditions:

1.Airline(aline)
2.DirectFlight(f, aline, start, destination)
3.SeatFree(f, date, s)

 Subtasks:
1. Buy ticket for s on f at date

 Orderings:
 {}
 where start, destination, aline, f, date, and s are
variables.

If the system is trying to accomplish the task “Get a direct
flight Ticket from Atlanta to Allentown,” and when solving
the first precondition, aline is instantiated to American
Airlines, SHOE will also indicate that local closed world
information has been yielded (American Airlines is the
only carrier that offers direct flights between Atlanta and
Allentown, PA). The LCW statement has the form
LCW(DirectFlight(f, aline, Atlanta, Allentown)),
indicating that we have complete information about the
direct flights from Atlanta to Allentown. Thus, if no seats
were available in any of the flights between these two

locations (preconditions 3 and 4), there is no need to
search for another airline and check direct flights
(preconditions 1 and 2).

The operators, which are the knowledge units
describing actions changing the world, may yield or
remove LCW information. As an example of an operator
yielding LCW information, consider the following
operator that uses the same variable names as before:

Task:
 Get all free seats available in f at date
Preconditions:

1. Flight(f, aline, start, destination)
Add:

1. s SeatFree(f, date, s)
 Delete:
 ()

This operators collects all free seats available in flight f at
date. Thus we yield complete information since any seat
that was not collected must be occupied. The
corresponding statement that is added to KB is:
LCW(SeatFree(355, 1/2/2002, s) assuming that the
operator was executed with the bindings: f 355 and date
 1/2/2002.

4.5 Preconditions and the Semantic Web
Mediator

If p is unknown, the OTD Plan generator queries the
Semantic Web Mediator for p. This subsytem executes the
following steps:

1. It determines an information source to access
2. It accesses the source and parses the SHOE

associated with it
3. If p can be satisfied from the KB, the source, and

associated ontologies, the variable bindings
satisfying p are returned.

4. If p cannot be satisfied, the source’s and the KB’s
LCW statements are accessed to determine if
complete information about p is contained. If this
is the case, p is false

5. Otherwise, the system chooses another source and
repeats the process.

Any information that is gathered by the Semantic Web
Mediator while performing these steps is passed to the KB.
Notice that the fifth step implies that if LCW information
is not available, the search may be unbounded. In practice,
resource-bounded constraints such as time limits or
maximum number of accesses may be used to terminate
the search.

5 Related Work
XII is the planner that first introduced LCW to reduce the
planning time when dealing with external information

sources (Golden, Etzioni, and Weld 1994). This and other
works show that LCW information can dramatically
reduce the planning time by avoiding redundant access to
external remote information sources. XII follows the
partial-order planning paradigm instead of the ordered task
decomposition paradigm discussed in this paper. As a
result of this difference XII uses a very different
mechanism to handle LCW information.

Another important difference is that in XII, only LCW
information yielded by actions is accounted for whereas in
our work we also allow LCW information to be defined as
meta-knowledge. This difference is crucial to reflect the
fact that no system has centralized knowledge about all
possible inferences. In the semantic web, inference
information is distributed in the ontologies of the remote
information sources.

Our work is also similar to the Ashop planner (Dix et
al 2002) in that OTD was extended for accessing external
information sources for a multi-agent system called
IMPACT. In our work, however, we extend OTD to take
advantage of local closed-world information in the context
of the semantic web.

6 Conclusions and Future Work
In this paper we integrate HTN planning and Semantic
Web ontologies for defining agents capable of solving
complex information integration tasks. We discussed how
many Semantic Web applications will need access to
closed-world information, but the nature of the Semantic
Web makes it naturally an open-world. To overcome this
problem, we presented extensions to the SHOE languages
for representing LCW statements. We discuss how LCW
statements can be added to SHOE naturally due to its
similarity to information integration approaches to using
LCW.

We also described an agent that takes advantages of
these LCW statements. We discussed two sources for the
LCW statements during the agent's HTN planning process:
LCW information is provided explicitly by the information
sources using the extensions to the Semantic Web
languages discussed and LCW information is inferred as a
result of an action. We saw that the Semantic Web
Mediator is a key component of the agent's design, whose
main function is to evaluate the OTD Plan Generator’s
preconditions by accessing remote information sites.

In future work, we intend to complete the
implementation of the agent, consider the effects of non-
deterministic and dynamic environments, and investigate
solutions to the difficult problems related to inconsistency.

References
Berners-Lee, T.; Hendler, J.; and Lasilla, O. 2001. The
Semantic Web. Scientific American, May 2001.
Dix, J.; Muñoz-Avila, H.; Nau, D. S.; Zhang, L. (2002)
IMPACTing SHOP: Putting an AI Planner into a Multi-

Agent Environment. To appear in Annals of Mathematics
and Artificial Intelligence.
Duschka, O. 1997. Query Optimization using Local
Completeness. In Proc. of AAAI-97, 249-255. Menlo Park,
Calif.: AAAI Press.
Erol, K.; Hendler, J. and Nau, D.S. 1994. UMCP: A Sound
and Complete Procedure for Hierarchical Task-Network
Planning. In Proc. of AIPS-94.
Etzioni, O.; Golden, K; and Weld, D. 1997. Sound and
Efficient Closed-World Reasoning for Planning. Artificial
Intelligence, 89:113-148.
Friedman, M. and Weld, D. 1997. Efficiently Executing
Information-Gathering Plans. In Proc. of IJCAI-97.
Golden, K.; Etzioni O.; and Weld, D. 1994. Omnipresence
Without Omniscience: Efficient Sensor Managment for
Planning. In proc. of AAAI-94.
Guarino, N. 1998. Formal Ontology and Information
Systems. In Proc. of Formal Ontology and Information
Systems, Trento, Italy. IOS Press.
Heflin, J. 2001. Towards the Semantic Web: Knowledge
Representation in a Dynamic, Distributed Environment.
Ph.D. Thesis, University of Maryland, College Park.
Lambrecht, E.; Kambhampati, S.; and Gnanaprakasam, S.
1999. Optimizing Recursive Information Gathering Plans.
In Proc. of IJCAI-1999. 1204-1210.
Levy, A. 1996. Obtaining Complete Answers from
Incomplete Databases. In Proc. of the 22nd VLDB
Conference.
Luke, S. and Heflin, J. 2000. SHOE 1.01 Proposed
Specification. At:
http://www.cs.umd.edu/projects/plus/SHOE/spec.html
Luke, S.; Spector, L.; Rager, D.; and Hendler, J. 1997.
Ontology-Based Web Agents. In Proc. of First
International Conf. on Autonomous Agents, 59-66. New
York, NY: Association of Computing Machinery.
Nau, D.S.; Smith, S.J.J; and Erol, K; 1998. "Control
Strategies in HTN Planning: Theory versus Practice." In
AAAI-98/IAAI-98.
Nau, D.; Cao, Y; Lotem, A.; and Muñoz-Avila, H. 1999.
SHOP: Simple Hierarchical Ordered Planner. In
Proceedings of IJCAI-99.
Nau, D.; Muñoz-Avila, H.; Cao, Y.; Lotem, A.; and
Mitchell, S. 2001. Total-Order Planning with Partially
Ordered Subtasks. In Proceedings of IJCAI-2001.
Noy, N. and Hafner, C. 1997. The State of the Art in
Ontology Design. AI Magazine, 18(3):53-74.
Smith, M.; Welty, C.; and McGuinness, D. OWL Web
Ontology Language Guide. W3C Candidate
Recommendation. W3C. August, 2003. At:
http://www.w3.org/TR/2003/CR-owl-guide-20030818/
Wiederhold, G. 1992. Mediators in the Architecture of
Future Information Systems. IEEE Computer. 25(3):38-49.

