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Abstract
We integrate HTN planning and Semantic Web ontologies 
for efficient information integration. HTNs is a hierarchical 
plan representation that refines high-level tasks into simpler 
tasks. In the context of information integration, high-level 
tasks indicate complex queries whereas low-level tasks 
indicate concrete information-gathering actions such as 
requests to an information source. Semantic Web 
ontologies allow software agents to intelligently process 
and integrate information in distributed and heterogeneous 
environments such as the world wide web. The integration 
of HTNs and Semantic Web ontologies allow agents to 
answer complex queries by processing and integrating 
information in such environments.  We also propose to use 
local closed world (LCW) information to assist these 
agents. LCW information can be obtained by accessing 
sources that are described in a Semantic Web language 
with LCW extensions, or by executing operators that 
provide exhaustive information. We demonstrate how the 
Semantic Web language SHOE can be augmented with the 
ability to state LCW information. 

1 Introduction
The World Wide Web has transformed society, changing 
the way people communicate, learn, and conduct business. 
However, the dramatic growth of the Web over recent 
years has made it increasingly difficult for people to take 
full advantage of its capabilities. One solution is to build 
sophisticated intelligent agents, programs that can 
autonomously take actions in order to achieve their 
owners’ goals. These agents could process and integrate 
the multitude of data available, filtering information for 
users or acting on their behalf. The Semantic Web 
(Berners-Lee, Hendler, and Lasilla 2001) is an approach to 
making the Web’s information accessible to intelligent 
agents that does not require them to understand natural 
language. Instead, the Semantic Web encodes the content 
of pages in a machine-readable format and explicitly links 
this content to machine-understandable semantics in the 
form of ontologies.

Agents on the Semantic Web will need to plan how to 
achieve their goals and must use heterogeneous web 
resources in order to make their decisions. However, most 
planning methodologies assume that the planner has 
complete knowledge about the state of the world. On the 
Web, this is simply impossible: the Web is too large and 
changes too quickly for any agent to reasonably assume 

that it has complete knowledge. However, with an open-
world, an agent may spend an unbounded amount of time 
attempting to find an answer to a query when none exists. 
Golden, Etzioni, and Weld (1994) have proposed that local 
closed world information (LCW) can be used to handle 
such problems in incomplete information environments. 
However, this approach has never been directly applied to 
the Semantic Web. In this paper, we make the following 
contributions:

1. We integrate HTN planning and Semantic Web 
ontologies for defining agents capable of solving 
complex information integration tasks.

2. We extended the Semantic Web language SHOE 
that allow Web documents and other resources to 
express LCW information. We show how LCW 
information benefits the agents defined in 1.

The paper continues as follows: in the next section we 
provide a quick overview of the semantic web and LCW. 
Next we discuss how to enhance LCW on the Semantic 
Web language SHOE. Next we described HTN planning 
and how to define agents that integrate HTN planning and 
the SHOE language. We also discuss how these agents 
benefit from the SHOE LCW statements. Finally we 
discuss related work and make final remarks.

2 Background
This work builds on research in the Semantic Web and 
research into the use of LCW information. We will now 
briefly discuss each of these areas.

2.1 The Semantic Web
The goal of the Semantic Web is to automate machine 
processing of web documents by making their meanings 
explicit (Berners-Lee, Hendler, and Lasilla 2001). 
Semantic web languages do this by allowing users to 
create ontologies, which specify standard terms and 
machine-readable definitions. Semantic web documents 
then commit to one or more ontologies, thus stating which 
sets of definitions are applicable. Over the last ten years, 
knowledge representation researchers have studied the use 
of ontologies for sharing and reusing knowledge (Noy and 
Hafner 1997). Although there is some disagreement as to 
what comprises an ontology, most ontologies include a 



taxonomy of terms (e.g., a Car is a Vehicle), and many 
ontology languages allow additional definitions using 
some form of a logic. Guarino (1998) has defined an 
ontology as “a logical theory that accounts for the intended 
meaning of a formal vocabulary.” A common feature in 
ontology languages is the ability to extend preexisting 
ontologies. Thus, users can gain the interoperability 
benefits of sharing terminology where possible, but can 
also customize ontologies to include domain specific 
information. 

A number of Semantic Web languages have been 
proposed, and the W3C is in the process of completing an 
international standard called OWL (Smith, Welty, and 
McGuinness 2003). However, for reasons we explain later, 
this paper will focus on the SHOE language (Luke et al. 
1997, Heflin 2001). Like OWL, SHOE has ontologies 
which provide definitions of classes and properties (called 
categories and relations in SHOE). However, OWL is 
based on description logic while SHOE is based on 
datalog, a data model commonly used for deductive 
databases. The syntax of datalog is basically Prolog 
without function symbols, but unlike Prolog, no control 
flow is implied by the ordering of statements and atoms. 
SHOE does not have as rich expressions for defining 
classes as OWL, but does have the ability to express 
arbitrary Horn clauses, something that OWL lacks. SHOE 
data consists of instances that can be found in web 
documents. These instances commit to one or more SHOE 
ontologies. The data can specify categories (classes) of 
which instances are members and relationships between 
instances (predicates). The complete specification of the 
language is available on the Web (Luke and Heflin 2000). 
In this paper, our SHOE examples will use SHOE’s XML 
syntax.

2.2 Local Closed World Information
The closed-world assumption (CWA) is used in the 
semantics of programming languages like Prolog and most 
databases. It basically states that if a fact cannot be proven 
to be true, then the fact is assumed to be false. This 
assumption is useful in that it allows additional inferences 
to be drawn from the absence of information. However, 
this assumption is often inappropriate because knowledge 
may be incomplete. Local closed-world (LCW) 
information is an approach to this problem in which 
closed-world information can be obtained on subsets of the 
information that are known to be complete, while still 
allowing other information to be treated as unknown 
(Golden, Etzioni and Weld 1994). LCW information is 
given as meta-level sentences of the form LCW(). The 
semantics of such a sentence is that for all variable 
substitutions , if the ground sentence  is true in the 
world then  is represented in the agent’s knowledge 
base. Any matching ground sentence that is not in the 
knowledge base is known to be false.

Golden, Etzioni and Weld originally developed LCW 
in the context of agent planning, and used it to describe the 
effects of sensing operations that return exhaustive 
information. Levy (1996) extended this formalism to deal 
with obtaining complete answers from partial databases, 
that is, databases that have incomplete information. 
Various work in information integration has followed, with 
an emphasis on using LCW to generate efficient 
information gathering plans (Friedman and Weld 1997; 
Duschka 1997; Lambrecht, Kambhampati, and 
Gnanaprakasam 1999). However, this work assumes a 
priori knowledge of the local completeness information for 
each information source. These systems typically have a 
small number of predetermined information sources, and 
in such a system, this information could be provided by an 
administrator whenever a new source was added. 
However, if this work is to be applied to the Semantic 
Web, then one must realize that there are potentially 
millions of information sources, since each web page could 
be considered a data source. In the next section, we will 
discuss how Semantic Web languages can be extended to 
allow web resources to provide LCW information 
regarding their contents.

3 LCW on the Semantic Web
The closed-world assumption is inappropriate for the 
Semantic Web due to its size and rate of change. Since the 
Web, is so large, no single agent could expect to have 
complete knowledge of its contents, and thus an 
assumption that any unknown facts must be false will often 
be mistaken. However, if an open-world is assumed, then 
an agent’s search is unbounded, because if it has not found 
an answer, it has no way of knowing if the answer may be 
available elsewhere if it simply continues its search. In this 
section we propose how two Semantic Web languages can 
be extended to use LCW information.

In the formulation by Etzioni, Golden, and Weld 
(1997), LCW sentences are restricted to positive 
conjunctions of logical atoms that include one or more 
variables. Descriptions logics (and thus OWL) cannot 
represent all of these sentences. However, SHOE has a 
more natural fit, since like most information integration 
approaches, SHOE is based on datalog. 

We can add LCW information to SHOE by 
introducing a lcw element to instances. That is, a particular 
SHOE instance can claim to have complete knowledge 
over some set of information. As with the formulation by 
Etzioni, Golden, and Weld (1997), we will restrict SHOE 
LCW sentences to positive conjunctions. In SHOE syntax, 
this essentially means the child elements of the lcw 
element are an arbitrary number of category and relation 
elements. We call the language with this construct SHOE-
LCW.

As an example, the LCW statement:
LCW(Flight(x)  ̂destination(x,y)  ̂UsCity(y))
can be represented in SHOE-LCW as follows:



<lcw>
<category name=”faa.Flight”

           usage=”var” for=”x” />
<relation name=”faa.destination”>
<arg pos=”1” usage=”var” value=”x” />
<arg pos=”2” value=”var” value=”y” />

</relation>
<category name=”faa.UsCity”

            usage=”var” for=”y” />
</lcw>

The use of relations allow SHOE to naturally capture 
statements such as LCW(prop(x,c)) and LCW(prop(c,x)). 
In each case, the lcw element contains a single relation 
element with one argument that is a constant and one 
argument that is a variable.

The semantics of SHOE-LCW is based on the 
semantics of SHOE (Heflin 2001), with one modification 
to handle the lcw element. This element can be expressed 
as a standard LCW statement by representing each 
category as a unary predicate, and representing each n-ary 
relation as an n-ary predicate. The conjunction of these 
sentences forms the LCW sentence. The semantics of this 
sentence are similar to those described in the previous 
section. The instance element in SHOE represents a web 
page whose content is described by the SHOE tags. 
Typically this instance is the page in which the tags occur, 
but may be another web resource.

Note that LCW adds implicit negation to SHOE, 
introducing the possibility of logical inconsistency. That is, 
if one source claims to have LCW information about a 
relation, and another source contains an instance of the 
relation that is not in the former, then the two sources 
contradict each other. Handling inconsistency on the 
Semantic Web is still an unsolved problem, so we will 
assume that information sources only state LCW 
information when they actually have local completeness 
information, thereby allowing us to ignore any resources 
that contradict it.

4 LCW for Agent Planning
In this section we are going to explain how the LCW 
statements added to the SHOE language can be used for 
agent planning on the Semantic Web. First we are going to 
describe the planning formalism known as Ordered Task 
Decomposition (OTD)  (Nau et al, 1999). We have chosen 
to use OTD planning for two main reasons: first, HTN 
planning, of which OTD is an special form, has been 
shown to be strictly more expressive than STRIPS 
planning, of which partial-order planning is an special 
form (Erol, Hendler, and Nau 1994). Second, hierarchical 
task decomposition has been shown to be useful for many 
real-world domains (Nau et al. 1998).

4.1 Ordered Task Decomposition
An HTN (hierarchical task network) is a set of tasks and 
their ordering relations, denoted as N=({t1,…,tm},<) 

(m0), where < is a binary relation expressing temporal 
constraints between tasks. Decomposable tasks are called 
compound, while non-decomposable tasks are called 
primitive. 

A domain theory consists of methods and operators 
for generating plans. A method is an expression of the 
form M=(h,P,ST), where h (the method's head) is a 
compound task, P is a set of preconditions, and ST is the 
set of M's (children) subtasks. M is applicable to a task t, 
relative to a state S (a set of ground atoms), iff 
matches(h,t,S) (i.e., h and t have the same predicate and 
arity, and a consistent set of bindings Θ exists that maps 
variables to values such that all terms in h match their 
corresponding ground terms in t) and the preconditions P
are satisfied in S (i.e., there exists a consistent extension of 
Θ, named Θ', such that  pP {pΘ'S}), in which case 
M(t,S)=ST Θ'.

An operator is an expression of the form 
O=(h,P,aL,dL), where h (the operator's head) is a 
primitive task, P is a set of preconditions, and aL and dL 
are the so-called add- and delete-lists. These lists define 
how the operator's application transforms the current state 
S: every element in the add-list is added to S and every 
element in the delete-list is removed from S. An operator O
is applicable to a task t, relative to a state S, iff 
matches(h,t,S) and the preconditions P are satisfied in S.

A planning problem is a triple (T,S,D), where T is a 
set of tasks, S is a state, and D is a domain theory. A plan 
is the collection of primitive tasks obtained by 
decomposing all compound tasks in a planning problem 
(T,S,D).

At any point during the Ordered Task Decomposition 
process (OTD), a task list T’ is being refined relative to a 
state S and a domain theory D. Initially, T’ is the set of 
tasks T in the planning problem (T,S,D).  In an ordered 
task decomposition process, the tasks must be totally 
ordered (i.e., the < relation on HTNs is a total order).
During the OTD process the partial solution plan p being 
derived (i.e., the primitive tasks in T’) is maintained. 
Initially p is empty. The OTD process selects the first task 
t in T’ and continues as follows:

 If t is primitive and has an applicable operator O, then O 
is applied to t, S is updated accordingly, t is removed 
from T’ and added to the end of p.

 Else if t is compound and has an applicable method M 
(that has not yet been applied to t), then M is applied, 
which replaces t in T’ with M’s subtasks. 

 Else if T’ is not empty, then backtracking occurs.
 Else the process fails.

The OTD process terminates when T’ is empty, in 
which case p is the solution, or when trying to backtrack 
on a compound task t whose applicable methods have been 
exhausted. The OTD process was first implemented in the 
SHOP planning system (Nau et al., 1999). A variant was 



created that relaxes the condition requiring the tasks to be 
totally order (Nau et al., 2001) but for the sake of 
simplicity we'll concentrate on the original assumption that 
the tasks are totally ordered.

4.2 LCW Statements in Planning
LCW statements are meta-knowledge about the available 
facts. There are two sources for LCW statements during 
planning:

- LCW information is provided explicitly. Explicit 
LCW information could be part of the agent’s 
background knowledge or may be provided by the 
information sources. The later means that the 
information sources being accessed know in advance 
that the information is locally closed. As an example, 
American Airlines has complete information about all
American Airlines flights.

- LCW is inferred as a result of an action. This 
means that the execution an action yields local closed-
world information. As an example, the UNIX 
command ls, when executed in a directory /dir, yields 
complete information about the files contained and not 
contained in /dir.

The first source of LCW information has been explored in 
work on information integration, where the information is 
used to generate efficient information gathering plans 
(Levy 1996, Friedman and Weld 1997, Duschka 1997). In 
our framework, this information is provided by the LCW 
statements in the SHOE or the DAML extensions 
discussed in the previous sections. The second source of 
LCW was proposed in (Golden, Etzioni, and Weld 1994). 
It reflects the fact that it is typically assumed that all 
knowledge about changes in the world is modeled in 
actions known by the planner. 

To include these two sources of planning within OTD, 
we need to (1) cope with the problem of distributed state 
information (classical planners assume a centralized state 
that contains all known facts), (2) extend the way methods 
and (3) operators are used. 

4.3 OTD Planning with the Semantic Web
During the OTD decomposition process queries to external 
information sources need to be performed to evaluate if the 
preconditions can be satisfied and to take into account 
LCW statements that had been gathered so far. To handle 
this situation we created two additional entities external to 
the OTD Plan Generator: The Knowledge Base (KB) and 
the Semantic Web Mediator (see Figure 1). The former 
maintains known facts and LCW statements and the latter 
mediates between the OTD Plan Generator and the 
external information sources by accessing and interpreting 
relevant Semantic Web documents.

The Semantic Web Mediator is based on the concept 
of mediators proposed by Wiederhold (1992); it is a 

system that is capable of integrating multiple sources in 
order to answer questions for another system. Its main 
function is to evaluate the OTD Plan Generator’s 
preconditions by accessing Semantic Web resources. To 
accomplish this task the Semantic Web Mediator uses and 
maintains information about remote sites available, access 
information, and known ontologies in the KB.

Figure 1

The KB maintains three forms of knowledge:

 Facts that have been gathered so far either through 
actions of the OTD Plan Generator or through remote 
access by the Semantic Web Mediator

 LCW statements yielded by the OTD Plan Generator or 
collected by the Semantic Web Mediator

 Summary of information source contents

It is important to notice that changes resulting from actions 
taken by the OTD Plan Generator are recorded in the KB 
rather than in the actual sources. Consider an action to 
reserve a seat in a flight that the mediator discovered was 
free. In the KB we keep track of this action as if the seat 
was reserved without actually going to the information 
source and reserving it. We choose this approach because 
backtracking may occur if we are not be able to satisfy the 
conditions for other actions later on. Such situations would 
require the costly process of reaccessing sources in order 
to tell them to undo previous actions. Thus, we continue 
planning and once we complete the plan we perform the 
execution. 

For this approach to work we are making the 
assumption that the content of the information sources 
(particularly with regards to LCW information) does not 
change during the planning time. This is a typical 
assumption made by other systems planning with external 
information sources (e.g., (Golden, Etzioni, and Weld 
1994)) with the rationale being that the small amount of 
time taken to complete the plan makes it unlikely that this 



information would change. However, we do acknowledge 
that in the context of the Semantic Web the validity of this 
assumption may be questionable and we are currently 
investigating solutions to the problem. 

4.4 Precondition Evaluation
When a precondition p is evaluated, four steps need to be 
performed:

1. Determine if p can be satisfied or not by accessing the 
KB’s facts

2. If p can be satisfied, the variable bindings satisfying p 
are returned.

3. If p cannot be satisfied, the KB’s LCW statements are 
accessed to determine if complete information about p 
is contained. If this is the case, p is false

4. If p cannot be satisfied and there is no complete 
information about p in the KB’s LCW statements, p is 
unknown. In this case, p is passed to the Semantic 
Web Mediator.

The first two steps mimic the standard precondition 
evaluation; in OTD the current state is locally maintained 
and to determine if the preconditions are satisfied or not, 
one looks if p is matched in the current state. The third and 
fourth steps are necessary to handle LCW information. An 
example of such a situation can be illustrated with the 
following method, which is the knowledge unit describing 
the conditions (called preconditions) under which a task
can be decomposed into subtasks:

      Task: 
            Get a direct flight Ticket from start to destination 
at date
      Preconditions:

1.Airline(aline)
2.DirectFlight(f, aline, start, destination)
3.SeatFree(f, date, s)

      Subtasks:  
1. Buy ticket for s on f at date

       Orderings:
                {}            
   where start, destination, aline, f, date, and s  are 
variables. 

If the system is trying to accomplish the task “Get a direct 
flight Ticket from Atlanta to Allentown,” and when solving 
the first precondition, aline is instantiated to American 
Airlines, SHOE will also indicate that local closed world 
information has been yielded (American Airlines is the 
only carrier that offers direct flights between Atlanta and 
Allentown, PA). The LCW statement has the form 
LCW(DirectFlight(f, aline, Atlanta, Allentown)), 
indicating that we have complete information about the 
direct flights from Atlanta to Allentown. Thus, if no seats 
were available in any of the flights between these two 

locations (preconditions 3 and 4), there is no need to 
search for another airline and check direct flights 
(preconditions 1 and 2).

The operators, which are the knowledge units 
describing actions changing the world, may yield or 
remove LCW information. As an example of an operator 
yielding LCW information, consider the following 
operator that uses the same variable names as before:   

Task: 
            Get all free seats available in f at date
Preconditions:

1. Flight(f, aline, start, destination)
Add:  

1. s SeatFree(f, date, s)
       Delete:
                  ()

This operators collects all free seats available in flight f at
date. Thus we yield complete information since any seat 
that was not collected must be occupied. The 
corresponding statement that is added to KB is: 
LCW(SeatFree(355, 1/2/2002, s) assuming that the 
operator was executed with the bindings: f 355 and date 
 1/2/2002.

4.5 Preconditions and the Semantic Web 
Mediator

If p is unknown, the OTD Plan generator queries the 
Semantic Web Mediator for p. This subsytem executes the 
following steps:

1. It determines an information source to access
2. It accesses the source and parses the SHOE 

associated with it
3. If p can be satisfied from the KB, the source, and 

associated ontologies, the variable bindings 
satisfying p are returned.

4. If p cannot be satisfied, the source’s and the KB’s 
LCW statements are accessed to determine if 
complete information about p is contained. If this 
is the case, p is false

5. Otherwise, the system chooses another source and 
repeats the process.

Any information that is gathered by the Semantic Web 
Mediator while performing these steps is passed to the KB. 
Notice that the fifth step implies that if LCW information 
is not available, the search may be unbounded. In practice, 
resource-bounded constraints such as time limits or 
maximum number of accesses may be used to terminate 
the search.

5 Related Work
XII is the planner that first introduced LCW to reduce the 
planning time when dealing with external information 



sources (Golden, Etzioni, and Weld 1994). This and other 
works show that LCW information can dramatically 
reduce the planning time by avoiding redundant access to 
external remote information sources. XII follows the 
partial-order planning paradigm instead of the ordered task 
decomposition paradigm discussed in this paper. As a 
result of this difference XII uses a very different 
mechanism to handle LCW information. 

Another important difference is that in XII, only LCW 
information yielded by actions is accounted for whereas in 
our work we also allow LCW information to be defined as 
meta-knowledge. This difference is crucial to reflect the 
fact that no system has centralized knowledge about all 
possible inferences. In the semantic web, inference 
information is distributed in the ontologies of the remote 
information sources.

Our work is also similar to the Ashop planner (Dix et 
al 2002) in that OTD was extended for accessing external 
information sources for a multi-agent system called 
IMPACT. In our work, however, we extend OTD to take 
advantage of local closed-world information in the context 
of the semantic web.

6 Conclusions and Future Work
In this paper we integrate HTN planning and Semantic 
Web ontologies for defining agents capable of solving 
complex information integration tasks. We discussed how 
many Semantic Web applications will need access to 
closed-world information, but the nature of the Semantic 
Web makes it naturally an open-world. To overcome this 
problem, we presented extensions to the SHOE languages 
for representing LCW statements. We discuss how LCW 
statements can be added to SHOE naturally due to its 
similarity to information integration approaches to using 
LCW.

We also described an agent that takes advantages of 
these LCW statements. We discussed two sources for the 
LCW statements during the agent's HTN planning process:  
LCW information is provided explicitly by the information 
sources using the extensions to the Semantic Web 
languages discussed and LCW information is inferred as a 
result of an action. We saw that the Semantic Web 
Mediator is a key component of the agent's design, whose 
main function is to evaluate the OTD Plan Generator’s 
preconditions by accessing remote information sites.

In future work, we intend to complete the 
implementation of the agent, consider the effects of non-
deterministic and dynamic environments, and investigate 
solutions to the difficult problems related to inconsistency.
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