
A Scalable Approach for Partitioning OWL Knowledge Bases

Yuanbo Guo and Jeff Heflin

Computer Science & Engineering Department, Lehigh University, Bethlehem, USA

{yug2, heflin}@cse.lehigh.edu

Abstract. We describe an approach to partitioning a large OWL ABox with

respect to a TBox so that specific kinds of reasoning can be performed

separately on each partition and the results trivially combined in order to

achieve complete answers. The main features of our approach include: a

reasonable tradeoff between the complexity of the task and the granularity of

partitioning; worst-case polynomial time complexity; and the ability to handle

problems that are too large for main memory. In addition, we show promising

experimental results on both the Lehigh University Benchmark data and the real

world FOAF data. This work could contribute to the development of scalable

Semantic Web systems that need to deal with large amounts of data.

1 Introduction

OWL, the W3C recommended Web Ontology Language, is one of the key standards

for building the Semantic Web. OWL has three species, i.e. OWL Lite, OWL DL and

OWL Full, with increasing expressivity and thus increased reasoning complexity. It is

well known that OWL Lite and OWL DL logically correspond to expressive

Description Logics (DLs)1 (SHIF(D) and SHOIN(D) respectively) [13]. Thus, from

the logical point of view, an OWL Lite/DL knowledge base can be seen as consisting

of a DL TBox T and a DL ABox A. The TBox contains axioms about concepts (sets

of objects) and roles (binary relations) while the ABox is a set of assertions about

individuals (concept assertions) and assertions about their relationships (role

assertions).

Reasoning with OWL is highly complex. Even OWL Lite has exponential worst-

case complexity. Nonetheless, contemporary reasoners such as FaCT [11], Racer [8]

and Pellet [14] tend to work well with realistic TBoxes, which usually have moderate

sizes. All of the systems are main memory-based systems and are based on highly

optimized implementation of the tableaux algorithms.

Recently there is a growing interest for practical ABox reasoning (e.g. [9] and

[12]). As Horrocks et al. [12] pointed out, a great challenge for systems to support

ABox reasoning is due to the fact that ABoxes can be extremely large in a setting like

the Semantic Web. In fact, statistics from the well known Semantic Web search

engine SWOOGLE [2] have already revealed the trend that, as the Semantic Web

progresses, instance data will greatly outnumber ontologies. According to

SWOOGLE, which has thus far indexed over one million Semantic Web documents,

1 This paper assumes readers’ basic knowledge about DLs.

the ratio of data documents to ontologies was about 80 to 1 in 2005, and this gap has

widened by 40% in 2006.

This poses a great challenge for the development of practical Semantic Web

systems. Even if we disregard reasoning complexity, resource limitations (e.g.

physical memory) could prevent the system from handling a large ABox. To address

the problem, it is worthwhile to investigate the issue along different lines. For

instance, research on reasoning techniques and their optimized implementation will

certainly be helpful. Also there have been some preliminary proposals [14] for

implementing secondary-storage support for reasoning with large ABoxes, although

the performance impact is yet to be known.

In this work, we consider addressing the issue from a different perspective. Our

primary goal is to develop an approach to help existing systems overcome memory

limitations so that they will be able to handle a large ABox that is originally beyond

their capabilities. To this end, we adopt a divide-and-conquer approach, that is, we

consider how to partition an OWL ABox into smaller pieces that could be processed

separately while still guaranteeing the completeness of the reasoning in question when

the results are combined.

In what follows, first we formally define the kind of partitioning we are concerned

with. Then we describe our partitioning approach. Following that, we present an

empirical evaluation.

2 Independent ABox Partitioning

Amir and McIlraith [1] have defined partitioning of a logical theory. We have

specialized the definition for an ABox, as follows:

Definition 1 (ABox Partitioning). {Ai}i≤n is a partitioning of ABox A iff A =∪i A i.

Of course not every partitioning is useful to us. Recall that our goal is that we can

work on each of the partitions independently while still guaranteeing complete

reasoning if the results are combined. Specifically, in this work, we focus on instance

checking, a fundamental reasoning task with respect to an ABox. In other words, we

are concerned with the inference of concept assertions (in the form of a:C) and the

inference of role assertions (in the form of <a,b>:R). Thus a partitioning that meets

our requirements, which we shall call an independent partitioning, is as follows.

Definition 2 (Independent ABox Partitioning). Given an OWL knowledge base

K=(T,A), a partitioning of A, {Ai}i≤n, is an independent partitioning of A with

respect to T iff for every concept assertion or role assertion φ such that K⊨φ, there

exists Ai such that (T,Ai)⊨φ.

Note that in previous work [6], we have discussed the notion of independency

between OWL ABoxes and the detection of such relationship in some special cases.

This work can be seen as complementary, i.e., we consider how to develop a general

partitioning approach that can generate independent ABoxes.

Given Definition 2, there could potentially be a range of suitable partitions with

varying granularities. We identify some of them here. 1) The most fine-grained

partitioning is an independent partitioning that in addition guarantees the smallest

possible size of each partition. 2) Minimal set based partitioning. This is an

independent partitioning {Ai}i≤n that in addition satisfies: for every Ai there exists a

concept assertion or role assertion φ such that Ai is a minimal set with the property

Ai⊨φ. This partitioning does not take into account that multiple minimal sets may

entail the same assertion. 3) Common individual names based partitioning. This is a

partitioning such that all the partitions are disjoint in individual names and thus is

independent [6].
Among the above kinds of partitioning, 3) is simple to implement but the

granularity may not be satisfactory. On the other hand, as can be imagined, to achieve

a partitioning as fine-grained as 1) or 2) essentially amounts to a task with no less

computational complexity than complete reasoning on the ABox. This is just what we

wanted to avoid. In light of that, in this work, we have aimed at an approach that

generates partitioning that falls in between 2) and 3) and at the same time has a

polynomial worst-case time complexity.

3 An Approach for Independent ABox Partitioning

Now we discuss our approach to determining independent ABox partitions. As the

first step of the work, we will focus on OWL Lite. From the logical point of view, we

will consider OWL files that correspond to a DL SHIF knowledge base. In addition,

we will focus on the case where the assertion φ in Definition 2 is either a role

assertion or a concept assertion whose concept is atomic. Moreover, in order to

concentrate on the main idea, we ignore datatypes, which can easily be supported by

some adaptations. For the same reason, we assume there are no (in)equality assertions

in the ABox. Again, our approach can be easily adapted to address the presence of

such assertions.

3.1 Determining Relevant Assertions

In order to determine partitions, a core question facing us is to decide relevant
assertions in the ABox in the sense that they together might derive a new inference.
To this end, we have utilized the natural deduction-style inference rules.

Royer and Quantz [15, 16] have developed a generic approach to deriving a sound

and complete set of inference rules for any given DL. Their approach utilizes a sound

and complete Sequent Calculus for FOL (See [4] for the proof of soundness and

completeness). In order to derive rules for a given DL, they translate that DL into

FOL according to the well-known method and then identify from the resultant FOL

formulae necessary and sufficient conditions of provability in the Sequent Calculus.

These conditions will in turn lead to the derivation of inference rules for the DL. In

their work [16], they have applied this approach to a very expressive DL, which

includes constructs such as intersection, negation, value restriction, existential

quantity, role hierarchy, transitive role, inverse role and number restriction, and thus

subsumes SHIF. The resultant set of rules they have given is complete if nominals

are ignored, but this does not affect us since SHIF does not have such a feature.
 Based on their results, we have identified the following set of inference rules over
DL SHIF knowledge base (T,A). (In the rules, a, b, c are any individual names, C
any concept expression, and R any role name.)

TBox Rules

Subsumptions in the TBox will affect reasoning on ABox individuals (see R3 and

R7). There are over 100 TBox rules for inferring concept subsumptions and role

subsumptions. To save space we do not list them here and refer readers to [16]. (Note

due to this, some DL constructs such as negation and disjunction do not explicitly

appear here.) Below we use T �C1⊑C2 or T �R1⊑R2 to denote such inferences.
ABox Rules

 For ABoxes rules, we use A �φ as an abbreviation for (T, A)�φ. Also for simplicity
we ignore the constructs of ≥0R, ≥1R and ≤0R since they can be translated into
⊤,∃R.⊤ and ∀R.⊥ respectively.

R1) If φ∈A then A�φ
R2) A�a:⊤
R3) If T�C1⊑C2 and A �a:C1 then A �a:C2

R4) If A�a:C1, a:C2 then A �a:C1⊓C2

R5) If A�a:∀R.C, <a,b>:R then A �b:C
R6) If A�<a,b>:R, b:C then A�a:∃R.C
R7) If T�R1⊑R2 and A� <a,b>:R1 then A� <a,b>:R2

R8) If A�<a,b>:R then A�<b,a>:R
–

R9) If R∈R+(transitive role) and A�<a,b>:R, <b,c>:R then A�<a,c>:R

R10) If A�a:≤1R, <a,b1>:R, <a,b2>:R then A�b1=b2

R11) If A�a=b and a:C (resp. <a,c>:R, <c,a>:R, a=c) then A�b:C (resp. <b,c>:R,
<c,b>:R, b=c)

 The above rules may not be suitable for implementing an effective reasoning

system given their forward-chaining style. However, the advantage is that they

provide us with an intuitive guidance for partitioning: generally, assertions in the

antecedent of an inference rule should be placed in the same partition. However,

what complicates things is that those assertions could be implicitly inferred statements

and consequently we have to pinpoint their antecedent assertions in the ABox. This

essentially requires something akin to backward-chaining reasoning on the whole

knowledge base, which is not feasible for our purpose.

Given this, we have decided to make some changes to the rules so that they are

much easier for us to determine which assertions might infer which others and decide

partitions accordingly. In terms of reasoning, the adapted rules are still complete but

will be unsound. However, as far as partitioning is concerned, the unsoundness will

not affect the correctness of a partitioning and the only consequence of the

unsoundness will be that we potentially sacrifice the granularity of partitioning, i.e.,

we allow the case where two assertions are required to be in the same partition

although they are indeed irrelevant. The new rules are listed below. To distinguish

from the original one, we denote this new inference by |~ and we call it “might infer”.

TBox Rules

TR1’) If T�R1⊑R2 then T|~R1⊑R2
TR2’) For any concepts C1 and C2, T|~C1⊑C2

ABox Rules

R1’) If φ∈A then A|~φ
R2’) A|~a:⊤
R3’) If T|~C1⊑C2 and A |~a:C1 then A|~a:C2

R4’) If A|~a:C1, a:C2 then A |~a:C1⊓C2

R5’) If ∀-Possible(T, R) and A|~a:∀R.C, <a,b>:R then A|~b:C
R6’) If ∃-Useful(T, R) and A|~<a,b>:R, b:C then A|~a:∃R.C
R7’) If T|~R1⊑R2 and A|~ <a,b>:R1 then A|~ <a,b>:R2

R8’) If A|~ <a,b>:R then A|~ <b,a>:R–

R9’) If R∈R+, A|~<a,b>:R, <c,d>:R, and A|~a=c or A|~a=d or A|~b=c or A|~b=d
then A|~<a,c>:R, <a,d>:R, <b,c>:R, <b,d>:R

R10’) If ≤1-Possible(T, R) and A|~a:≤1R, <a,b1>:R, <a,b2>:R then A|~b1=b2

 R11’) If A|~a=b and A|~a:C (resp. A|~<a,c>:R or A|~<c,a>:R or A|~a=c) then
A|~b:C (resp. A|~<b,c>:R or A|~<c,b>:R or A|~b=c)

 We now look at the major changes and their implications.
 TR1’) For role subsumptions, we have decided not to define concrete rules. Instead,
as we will show in the next subsection, our partitioning algorithm will make use of a
complete reasoner to compute the subsumption order (⊑) of the roles in T. Note we
can do this easily since all roles are atomic in SHIF.
 TR2’) Concept subsumptions are more complicated since a concept may be a
complex one (e.g. ∀R1.C1⊓∃R2.C2). As such, just knowing the subsumption order of
atomic concepts in the TBox is not sufficient. To reduce the complexity, we have
decided to assume that the TBox “might infers” any concept subsumptions.
 R3’) Although this rule is virtually identical to R3, when combined with TR2’, R2’
and R4’, it has significant implications. In particular, for every concept expression C
and individual a, A|~a:C. As will be seen later, this will impact partitioning in the
following way: for any individual, all of its concept assertions in the ABox as well as
other assertions that are necessary for the inference of that individual’s concept
memberships will be assigned to the same partition.
 Given this rule allows A|~a:C for any a and C, it is reasonable to ask why we still
need other rules that may infer the same assertions (e.g. R5’ and R6’). The answer is
that the purpose in defining the |~ rule set here is not for doing reasoning per se.
Instead, it will be used as guidance to the partitioning algorithm we develop later. |~ is
complete but not sound (see Proposition 1 below). Therefore, even when two different
sets of assertions constitute the proof for the same inference through different |~ rules,
we still need to guarantee that for each set, the assertions it contains are put into the
same partitions.
 R5’) With this rule, we want to eliminate the complexity of having to exactly
determine whether a is an instance of ∀R.C. We instead try to determine, by only
taking into account certain information from T, whether it is possible that an
individual is inferred as of some concept ∀R.C (C≠⊤). We use ∀-Possible to denote
such a property of R. We define:

∀∀∀∀-Possible(TTTT, R) is true if a concept ∀S.C occurs on the right hand side of some

general concept inclusion (GCI) in T and R⊑S. (via Royer’s Rule 12)

 (Note here ⊑ denotes the subsumption relationship, which subsumes the reflexive-

transitive closure of the role hierarchy in T. Also note trivially C1≡C2 can be

translated into two GCIs.)

 We have derived the above definition through two ways. First, we resort to a
syntactical analysis of the TBox. For instance, if there is a GCI C1⊑∀R.C2 in T, then
∀-Possible(T, R) is true. This is straightforward because, given an ABox supporting
a:C1, we will be able to infer that a:∀R.C2. Second, we analyze the above mentioned
TBox inference rules provided by Royer and Quantz [16]. As a result, the “R⊑S”
condition in the definition stemmed from the following subsumption rule: C1⊑C2,

R2⊑R1 → ∀R1.C1⊑∀R2.C2 (Rule 12). The rationale is as follows: suppose C1⊑C2 and
R2⊑R1. If ∀-Possible(T, R1) is true, then according to the notion of ∀-Possible, it is
possible that some individual a is of type∀R1.C1. Thus by the rule we get a:∀R2.C2,
which in turn means ∀-Possible(T, R2) is also true. Similar analysis is used below, but
to save space, we will just reference the rules we have used.
 R6’) Originally, the implication of R6) is that <a,b>:R and b:C are always relevant
assertions: considering Definition 2, suppose φ be a:∃R.C. In order to guarantee the
partitions to be complete with respect to φ, we would have to put <a,b>:R and b:C in
the same partition. However, as mentioned earlier, in this work we focus on the case
that if φ is a concept assertion a:C, C is atomic. Therefore, in adapting the rule, we
have utilized that fact in order to help refine the granularity of partitioning. The idea
is that if a:∃R.C may help infer that a belongs to another concept (including an
atomic one), then <a,b>:R and b:C should be considered relevant; otherwise, the rule
needs not to be applied. As with R5’), the precise characterization is too complex and
thus instead we try to determine, based on some information of T only, whether some
fact a:∃R.C could possibly help infer that a belongs to another concept. For example,
if in T we have ∃R.C1⊑C2 or ∃R.C1⊑∀R.C2 then the answer is yes. We denote the
above property by ∃-Useful and have derived its rule using a similar method to R5’).

∃∃∃∃-Useful(TTTT, R) is true if any of the following is true:

1) A concept ∃S.C occurs on the left hand side of some GCI in T and R⊑S. (via

Royer’s Rule 13)

2) There exists S such that ∀-Possible(T, S) is true and R⊑S. (via Royer’s Rule 18)

 R9’) For reasoning concerning transitivity, the complexity lies in that we have to
match the object of one assertion with the subject of another in order to derive a new
assertion, and in addition to worry about which individuals appear in which positions
in the inferred assertion. We have given up this restriction in the new rule. One
benefit we get from that is now we could immediately tell what role assertions might
be inferred from a set of assertions of R. In addition, based on R7’–R9’, we are able to
conduct a simple individual names based partitioning for assertions related to R. This
will be shown in the next subsection.
 R10’) The idea is similar to R5’). To eliminate the reasoning about a:≤1R, we have
introduced ≤1-Possible(T, R), which is a judgment, based on certain information from
T, that it is possible that an individual is inferred as of concept ≤1R.

≤1-Possible(TTTT, R) is true if a concept ≤1S occurs on the right hand side of some GCI

in T and R⊑S. (via Royer’s Rule 40)

 From the above, we can see that ∀-Possible, ∃-Useful and ≤1-Possible play a role

in restricting the potential loss of the granularity of partitioning due to the relaxation

of other rules.

Proposition 1. |~ is complete but not sound with respect to the inference of role

assertions and concept assertions whose concept is atomic.

Proof. Let φ be an assertion of the above kinds. We know K⊨φ⇔K�φ. From the

description of |~, we can see that if K�φ then K|~φ. Specifically, among the rules,

TR1’, R1’–R4’, R7’, R8’ and R11’ are virtually identical to the original ones. For

TR2’ and R9’), their preconditions and/or consequences are relaxed. Thus

completeness is preserved. As to R5’, R6’ and R10’, they actually have strengthened

preconditions. However, this will not affect completeness. For R5’, as long as

a:∀R.C is entailed, ∀-Possible(T, R) will always be true, and thus the precondition is

still satisfiable. Similarly for R10’. For R6’, the notion of ∃-Useful determines that if

∃-Useful(T, R) is false, excluding R6’) will not affect the final inference of any a:C

where C is atomic, as well as any possible inferences about other individuals through

other rules. The above shows |~ is complete. On the other hand, it is easy to find an

example such that K|~φ but not K⊨φ, thus showing that the rules are not sound.

Overall, with |~, we have transformed the inference rules into a set that can better

serve our purpose so that we could develop a partitioning algorithm upon it.

3.2 Partitioning Rules and Algorithms

3.2.1 Constructing Chunk Graph

Our partitioning algorithm consists of two major steps:
1) Given the knowledge base, construct a chunk graph for its ABox.
2) Determine the final partitions based on the resultant chunk graph.

 First, we introduce chunks and chunk graph as the building block of partitions.

Definition 3 (Chunk and Chunk graph). A chunk graph G=(V, E) for an ABox A is

as follows: 1) Each vertex of G represents a chunk, which is a subset of A; chunks on

G are disjoint and their union is A. 2) G is a directed graph and (ck1,ck2)∈E means

that a partition P containing chunk ck2 must also contain chunk ck1.

 To construct the chunk graph, we define a set of basic rules (called chunk rules)
and a procedure for applying those rules. Most of the rules are derived by referring to
one or more of the might infer (|~) rules and the procedure designates the application
of chunk rules by taking into account the interaction between the inference rules.

ChunkRule 1: (Based on TR2’, R2’–R4’) Create a chunk for each individual a in A:
{a:C}a:C∈A. Hereafter we use chunk(a) to denote the chunk that holds the concept
assertions of a. Recall an assertion can only be in one chunk. Also note chunk(a) is
initially empty if a is untyped (although this is not allowed by OWL Lite.)

ChunkRule 2: Create a chunk for each role assertion φ in A. Hereafter we will use
chunk(φ) to denote the chunk that contains φ. Trivially, chunk(φ) |~ φ.

ChunkRule 3: (Based on R10’, R11’) If ≤1-Possible(T, R) and ck1|~<a,b1>:R,
ck2|~<a,b2>:R then
1) Merge ck1 and ck2 to ck. (Note ck1 and ck2 can be the same chunk.)
2) Merge chunk(b1) and chunk(b2) to ck’.
3) Draw an arc from chunk(a) to ck.
4) Draw an arc from ck to ck’.
5) For every role assertion φ involving b1 or b2, draw an arc from ck to chunk(φ).
6) Record the information b1≈b2 (abbreviation for A|~ b1=b2).

ChunkRule 4: (Based on R7’–R9’) For each R∈R+, conduct an individual names
based merging on the following set of assertions
 {<a,b>:R1 | R1⊑R or R1 is the inverse of R} (Note R⊑R)
according to the following principle:

for any two of the above assertions φ1=<a,b>:R1 and φ2=<c,d>:R2, where a≈c or
a≈d or b≈c or b≈d, merge chunk(φ1) and chunk(φ2).

 Recall we have relaxed the precondition of R9’. By virtue of that, we are able to do
the above simple operation. Moreover, the relaxation of the consequence of the same
rule has enabled us to quickly decide the assertions that the merged chunk might infer,
as follows:
 For a chunk ck having R∈R+, let

subject_list = {a | There exists <a,b>:R1∈ck
 where R1⊑R or <b,a>:R1∈ck where R1 is the inverse of R}
object_list = {a | There exists <b,a>:R1∈ck

 where R1⊑R or <a,b>:R1∈ck where R1 is the inverse of R}.
Then we know ck |~ {<a,b>:R | a∈subject_list and b∈object_list }

ChunkRule 5: (Based on R5’) If ∀-Possible(T, R) and ck|~<a,b>:R then
1) Draw an arc from chunk(a) to chunk(b).
2) Draw an arc from ck to chunk(b).

ChunkRule 6: (Based on R6’) If ∃-Useful(T, R) and ck|~<a,b>:R then
1) Draw an arc from chunk(b) to chunk(a).
2) Draw an arc from ck to chunk(a).
——————————————————————————————————
procedure BUILD_CHUNK_GRAPH(K)
 Input: OWL knowledge base K=(T,A)
 Output: a chunk graph G for A, empty initially.

Local variables: eq keeps all the ≈ information, nil initially.

Process T : 1) Use a complete reasoner to compute role subsumptions and role
inverseOf relationships. 2) Do a syntactical analysis of T to determine the truth
values of ∀-Possible, ∃-Useful and ≤1-Possible for each role.

 Update G by applying ChunkRules 1 and 2.
 repeat

Update G by applying ChunkRule 4.
Update G and eq by applying ChunkRule 3.

until neither G nor eq has been changed.
 Update G by applying ChunkRules 5 and 6.

return G

end
——————————————————————————————————
Example 1. Let K=<T,A> wherein
 T = {Student ⊑ ≤1advisor,
 Chair ≡∃headOf.Department,

 Department ⊑ ∀subOrg.University},
 A = {u1:University, d1:Department, g1:Group, g2:Group,

 f1:Faculty, f2:Person, f3:Faculty, f4:Faculty, s1:Student,
 <f3,d1>:headOf,

 <s1,f1>:advisor, <s1,f2>:advisor,
 <f3,f1>:worksFor, <f2,f4>:worksFor,
 <g1,d1>:subOrg, <g2,d1>:subOrg, <d1,u1>:subOrg}, and

 subOrg∈R+, worksFor∈R+.

 From T we can determine that ≤1-Possible(T, advisor), ∀-Possible(T, subOrg), ∃-
Useful(T, subOrg), and ∃-Useful(T, headOf) are true. Figs. 1 and 2 illustrate how the
chunk graph is constructed.

 (a) (b)

Fig. 1. a) Chunks are initialized by applying ChunkRules 1 and 2. Then ChunkRules

4 (for subOrg) and 3 (for advisor) were applied, and f1≈f2 is recorded.

 Note now ck |~{<g1,d1>:subOrg, <g1,u1>:subOrg, <g2,d1>:subOrg,

 <g2,u1>:subOrg, <d1,d1>:subOrg, <d1,u1>:subOrg},

 ck being the chunk that contains those subOrg assertions.

 b) ChunkRule 4 was applied for worksFor due to the new information of f1≈f2.

 Now ck |~{<f3,f1>:worksFor, <f3,f4>:worksFor, <f2,f1>:worksFor,

<f2,f4>:worksFor}, ck being the chunk that contains those worksFor assertions.

Fig. 2. ChunkRules 5 (for subOrg) and 6 (for subOrg and headOf) were applied and

consequently more arcs were added. The circles are explained in Section 3.2.2.

This algorithm is guaranteed to terminate. First, there is a maximum number of

elements in eq and eq’s size increases monotonically. Also there is a maximum

number of arcs on G. Moreover, if we look at merging two chunks as adding two arcs

between them, then the number of chunks is fixed after applying ChunkRules 1 and 2.

Following that the arcs on G will increase monotonically. Thus there is a maximum

number of changes to eq and G. The worst-case time complexity of the algorithm is

polynomial in n, the size of A. Specifically, since we do not need to compute concept

subsumptions, processing the TBox can be done in a polynomial time. The

complexity of applying each chunk rule is polynomial in n too. In addition, the

number of chunks on G is no more than n and the number of edges no more than n2.

Moreover, the maximum size of eq is n2. Overall, the complexity is polynomial in n.

Recall that the might infer (|~) rules are intentionally made unsound. In terms of

building a chunk graph, the consequence of the unsoundness will be that we might put

two irrelevant assertions into the same chunk or we might add a path between two

<f3,f1>:worksFor

<f2,f4>:worksFor

<f3,d1>:headOf

<g1,d1>:subOrg

<g2,d1>:subOrg

<d1,u1>:subOrg

u1:University d1:Department

g2:Group g1:Group

f3:Faculty f4:Faculty

s1:Student

<s1,f1>:advisor

<s1,f2>:advisor

f1:Faculty

f2:Person

u1:University d1:Department

g2:Group g1:Group

f3:Faculty

f4:Faculty

f1:Faculty

f2:Person

<f3,f1>:worksFor

<f2,f4>:worksFor

<f3,d1>:headOf

<s1,f1>:advisor

<s1,f2>:advisor

s1:Student

<g1,d1>:subOrg

<g2,d1>:subOrg

<d1,u1>:subOrg

<f3,f1>:worksFor

<f2,f4>:worksFor

<f3,d1>:headOf

<g1,d1>:subOrg

<g2,d1>:subOrg

<d1,u1>:subOrg

u1:University d1:Department

g2:Group g1:Group

f3:Faculty f4:Faculty

s1:Student

<s1,f1>:advisor

<s1,f2>:advisor

f1:Faculty

f2:Person

irrelevant chunks. As a result, we might get a coarser granularity of partitioning.

Nevertheless, as can be seen, compared to the original rules, the might infer rules

have greatly reduced the complexity and facilitated the decision making.

Proposition 2. Let K=(T,A) be an OWL Lite knowledge base and G=

BUILD_CHUNK_GRAPH(K). {Ai}i≤n is an independent partitioning of A (with

respect to the inference of role assertions and concept assertions whose concept is

atomic) if it complies with the semantics of G as defined by Definition 3.

Proof (Sketch). Let φ be a role assertion or a concept assertion whose concept is

atomic and K⊨φ. From the above description we can see that the way whereby the

chunk rules and the algorithm are designed guarantees the following property.

Suppose S is a minimal subset of A such that (T,S)⊨φ, then there exists a chunk ck

that satisfies: for every assertion β∈S, either β is in ck or there is a directed path from

Chunk(β) to ck. This means C⊇S, C being the union of all the chunks that can reach

ck (including ck itself). Thus (T,C)⊨φ. If the partitioning complies with the semantics

of G, there must be an Ai such that Ai⊇C. Therefore (T,Ai)⊨φ. Proved.

3.2.2 Determining Partitions
After chunk graph G is built, to determine the partitioning off G becomes fairly
straightforward. We name this procedure CONSTRUCT_PARTITIONS(G).
——————————————————————————————————
procedure CONSTRUCT_PARTITIONS(G)
 Input: The chunk graph created for OWL knowledge base K=(T,A)
 Output: an independent partitioning P of A, nil initially.

Compact G by merging every set of chunks that form a strongly connected
component of G.
For every chunk ck that has no outgoing links:
 Create a partition p = ∪i cki where ck is reachable from cki on G (including ck).
 P = P∪{p}

 return P
end
——————————————————————————————————
 In the above procedure, the most complex operations are those typical operations
on the graph, for example computation of reachability between vertices, which has
O(n

3
) worst-case complexity. Therefore, suppose n is the size of A, the algorithm will

have a time complexity of O(n
3
) in the worst situation where the number of chunks in

the resultant graph equals to n and moreover the graph is dense.

Example 1 (continued). By the above algorithm, we will get 4 partitions, each
enclosed by a dashed circle in Fig. 2. Note that chunks in multiple circles are
contained in multiple partitions.

 The above algorithm keeps the resultant partitions as small as possible by allowing
chunks in the same partition only when they are required by the chunk graph. In
practice, however, we may prefer a restricted number of partitions as long as their
sizes do not go beyond a predefined limit. In that case, we can do a merging of the
resultant partitions.

4 Implementation and Empirical Evaluation

We want to emphasize that our algorithm allows for an implementation based on
secondary storage so as to accommodate large data. Specifically, we use MySQL as
the backend DBMS. The input data are stored in the database in the form of triples.
Moreover, intermediate results during the processing, such as the chunks, chunk
graph, partitions, as well as relevant ≈ and |~ information, are all maintained in the
database. Furthermore, one feature of the algorithm is that, during the process, it often
only needs to work on a small subset of the input data at a time, for instance, concept
assertions for the same individual, role assertions for the same role, an individual
chunk, and so on. This locality property of the algorithm is important for the
implemented system to be able to scale.
 We have done experiments on both the synthetically created Lehigh University
Benchmark data and the realistic FOAF data. First, we have made use of the Lehigh
University Benchmark (LUBM) [7], which is a benchmark for evaluating OWL
knowledge base systems with a focus on ABox processing. Using the data generator
for LUBM, we have created test sets of a range of sizes from 1M to 13M.2 The
benchmark data commits to a realistic ontology of the university domain, which
features someValuesFrom, TransitiveProperty, inverseOf and so on. Table 1 and Fig.
3 show the test results. As can be seen, the system scales well.

Table 1. Test results on LUBM data

Test Set
(# of triples)

Partition
Time

(hh:mm:ss)

of
Partitions

Average
Partition Size
(# of triples)

Min
Partition Size
(# of triples)

Max
Partition Size
(# of triples)

1,311 K 00:21:18 396,197 21.2 1 1141

2,771 K 00:59:13 836,608 21.7 1 1154

6,863 K 03:22:05 2,071,365 21.6 1 1154

13,824 K 08:23:21 4,170,788 21.7 1 1184

(Test Environment: Windows XP OS; P4 2.8GHz CPU; 1G B of RAM; JDK 1.5)

Note that according to an experiment by Haarslev, Möller and Wessel [10], Racer,

one of the representative OWL reasoners, would at that time not be able to handle the

above sizes of LUBM datasets. (Their test was done on a P4 2.8GHz CPU 1GB RAM

machine running Linux.) However, given a partition of a size of 5000 triples or less,

Racer would be able to finish loading and ABox realization within 80 seconds.

In order to see how our approach

works with real world data, we have also

conducted a test on some FOAF data.

Thanks to Tim Finin of UMBC, who

provided us access to SWOOGLE’s

index of urls, we have collected a large

amount of FOAF data from the Web.

The sizes of data we used range from 1M

to 5M triples, and for those smaller data

sets, they are randomly selected subsets

Fig. 3. Partition Time of the largest one.

2 Using SWOOGLE, we estimate that the Web contained about 45M RDF/OWL triples as of Nov. 2005.

The most interesting OWL features with respect to partitioning in the FOAF

ontology are FunctionalProperty and InverseFunctionalProperty (which translate into

number restrictions in DL). For example, when two individuals are stated as having

the same homepage url, we should infer that they are the same individual, since

homepage is defined as an InverseFunctionalProperty in the FOAF ontology. Our

partitioning algorithm has captured a number of such cases according to ChunkRule

3.

Table 2. Test results on FOAF data

Test Set
(# of triples)

Partition
Time

(hh:mm:ss)

of
Partitions

Average
Partition Size
(# of triples)

Min
Partition Size
(# of triples)

Max
Partition Size
(# of triples)

1,240 K 00:29:34 1,117,955 1.4 1 831

2,474 K 01:16:44 1,919,804 1.7 1 1701

3,713 K 01:41:18 2,530,110 2.1 1 2790

4,950 K 02:43:06 2,990,069 2.6 1 4608

Test results on FOAF are shown in Table 2 and Fig. 3. As with the LUBM test, the

system scales well. Also the average partition sizes and max partition sizes are very

small.3 This is more than sufficient to partition data sets for main memory reasoning.

As a result, our choice to avoid full TBox reasoning is justified.

In order to empirically test the correctness of our implementation, we have done

another experiment using a small LUBM dataset (about 8K triples) and a small FOAF

dataset (about 5K triples) respectively. For each dataset, we partitioned it and then

issued a number of queries on it. For each query, we used Pellet to find answers for

each partition and then took the union of them. The test has shown that the answers

obtained in this way are identical to the results on the original dataset. Due to lack of

space, we omit the details of the test.

Again, we emphasize that the primary goal of this work is to help existing

reasoning systems overcome memory limitations in order to handle larger data sizes.

Nevertheless, we also consider it would be interesting to investigate how partitioning

will impact reasoning and query efficiency, especially in the case where the ABox is

big but still can fit into memory. This will be our future work.

5 Related Work

Grau et. al. [5] extended OWL to a family of ε-Connection languages for defining and
instantiating combinations of OWL knowledge bases. Based on that, they provided a
technique for decomposing an OWL knowledge base into smaller, connected
knowledge bases. Amir and McIlraith [1] have researched partition-based reasoning
for first-order and propositional theories. Their framework includes the algorithms for
automatic partitioning of a theory and the message passing algorithms for reasoning
with the partitioned theory. The fundamental difference of the above work from ours
lies in that their approaches, due to different requirements and goals, do not guarantee
an independent partitioning according to Definition 2. This is because both
approaches generate partitions with potential links and correct reasoning may require
communication between partitions through the links. In addition, to the best of our
knowledge, neither approach has a secondary storage based implementation.

3 Recall in practice we can merge the partitions in order to reduce their number.

 Fokoue et al. [3] have worked on making consistency checking more scalable for
ABoxes. The key idea is to employ static analysis of knowledge representation and
summarization techniques to extract a reduced proxy ABox, which is consistent only
if the original ABox is also consistent. Like our work, they assume large ABoxes in
secondary storage. We consider one major difference between the two works is the
following: from the instantiation query point of view, the extracted proxy ABox
depends on the given query while the partitioning by our approach does not.
 Stuckenschmidt and Klein [17] have studied partitioning OWL TBoxes for
modeling purposes. Their method automatically partitions a large TBox into smaller
components based on the structure of the class hierarchy in that TBox. Unlike our
work, their partitioning is not concerned with the influence of the partitioning on the
results of reasoning. Also our interest is on the ABox.
 As some other related work, in logic programming field, magic set is a well known
approach to avoid the consideration of irrelevant facts during the forward inference
process. In addition, there has been some research on the technique and language
support for parallel execution of logic programs. (See [18] for an example.) The
underlying idea of this work is to detect and utilize the dependency between logical
variables. Most of the work focuses on Horn Logic programs and languages such as
Prolog, and to the best of our knowledge, no similar work has been done with respect
to DLs.

6 Conclusion and Future Work

We have contributed an approach for partitioning an OWL knowledge base.

Specifically, the approach partitions an OWL ABox (with respect to an TBox) so that

we could reason with each partition separately while still guaranteeing sound and

complete reasoning about instance checking for concepts and roles. As a result, very

large ABoxes can be processed by contemporary main memory-based DL reasoners.

Moreover, we want to point out that reasoning with partitions could be done in

parallel, and depending on the number of nodes available, the total reasoning time

could be as low as x (where x is time to partition + time to reason with the largest

partition + time to union results).
 In developing our approach, we sacrificed the granularity of partitioning in order to
avoid a partitioning procedure that is as complex as DL reasoning. First, in order to
quickly determine relevant assertions, we have made some changes to a set of
inference rules for OWL Lite, mainly by relaxing the preconditions and consequences
of the rules. Then according to the adapted rules, we developed a partitioning
algorithm. The algorithm is based on the construction of a chunk graph. Chunks are
the building blocks of partitions, and the structure of the chunk graph dictates which
chunks must coexist in a partition. In our approach, a lot of decision making depends
only on the TBox. We consider this is important for acquiring a scalable partitioning.
Overall, our algorithm has worst-case polynomial time complexity.
 We have implemented the approach using a database management system and
conducted an empirical evaluation using both the Lehigh University Benchmark data
and the real world FOAF data. The results have demonstrated good scalability of the
approach. Moreover, the small average and max sizes of the resultant partitions have
justified the tradeoff we have made between the complexity and the granularity of
partitioning. We plan to conduct more experiments in the future to validate this.

 For future work, we will continue improve the approach in terms of the granularity
of partitioning. Other future work includes extending the technique to OWL DL
knowledge bases. In addition, the present work is only concerned with the inference
of atomic assertions and we plan to consider conjunctive queries. Lastly, we intend to
extend the algorithm to address the case of knowledge base updates. The goal is to
avoid having to re-partition from scratch when updates occur.

Acknowledgement: This material is based upon work supported by the National

Science Foundation under Grant No. IIS-0346963.

References

[1] Amir, E. and McIlraith S. Partition-Based Logical Reasoning. In Proc. of KR2000.

[2] Ding, L. et al. Search on the Semantic Web. IEEE Computer 10(38):62–69, 2005.

[3] Fokoue, A. et al. 2006. SHIN ABox Reduction. In Proc. of DL2006.

[4] Gallier, J. Logic for Computer Science: Foundations of Automatic Theorem Proving.

Harper & Row Publishers, 1986.

[5] Grau, B.C. et al. Automatic Partitioning of OWL Ontologies Using ε-Connections. In Proc.

of DL2005.

[6] Guo, Y. and Heflin, J. On Logical Consequence for Collections of OWL Documents. In

Proc. of ISWC2005.

[7] Guo, Y., Pan, Z. and Heflin, J. 2005. LUBM: A Benchmark for OWL Knowledge Base

Systems. Journal of Web Semantics 3(2), 2005, pp158-182.

[8] Haarslev, V. and Möller, R. 2003. Racer: A Core Inference Engine for the Semantic Web.

In Workshop on Evaluation on Ontology-based Tools, ISWC2003.

[9] Haarslev, V. and Möller, R 2004. Optimization Techniques for Retrieving Resources

Described in OWL/RDF Documents: First Results. In Proc. of KR2004.

[10] Haarslev, V., Möller, R. and Wessel, M. 2004. Querying the Semantic Web with Racer +

nRQL. In Proc. of the KI-04 Int’l Workshop on Applications of Description Logics.

[11] Horrocks, I. 1998. The FaCT System. In Tableaux’98.

[12] Horrocks, I. et al. The instance store: DL reasoning with large numbers of individuals. In

Proc. of DL2004.

[13] Horrocks, I. and Patel-Schneider, P. Reducing OWL entailment to description logic

satisfiability. Journal of Web Semantics 1(4), 2004, pp345-357.

[14] Pellet OWL Reasoner. http://www.mindswap.org/2003/pellet/.

[15] Royer, V. and Quantz, J.J. Deriving Inference Rules for Terminological Logics. Logics in

AI, In Proc. of JELIA’92.

[16] Royer, V. and Quantz, J.J. Deriving Inference Rules for Description Logics: a Rewriting

Approach into Sequent Calculi. KIT REPORT 111, Dec. 1993.

[17] Stuckenschmidt, H. and Klein, M. 2004. Structure-based partitioning of large class

hierarchies. In Proc. of ISWC2004.

[18] Ueda, K. I/O Mode Analysis in Concurrent Logic Programming. In Proc. of Theory and

Practice of Parallel Programming, 1995.

