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Abstract 
In this paper, we discuss how our work on evaluating 
Semantic Web knowledge base systems (KBSs) contributes 
to address some broader AI problems. First, we show how 
our approach provides a benchmarking solution to the 
Semantic Web, a new application area of AI. Second, we 
discuss how the approach is also beneficial in a more 
traditional AI context. We focus on issues such as 
scalability, performance tradeoffs, and the comparison of 
different classes of systems. 

Benchmarking Semantic Web KBSs 
Our research interest is to develop objective and unbiased 
ways to evaluate Semantic Web knowledge base systems 
(KBSs) (See Guo, Pan and Heflin 2004). Specifically, we 
have conducted research on benchmarking KBSs that 
store, reason and query statements described in OWL1, 
which is a standard language for describing and publishing 
Web ontologies. As a product of our work, we have 
developed the Lehigh University Benchmark (LUBM). 
The LUBM is, to the best of our knowledge, the first of its 
kind and has become well recognized in the Semantic Web 
community. The LUBM is designed to fill a void that we 
consider particularly important, i.e., the evaluation of 
systems with respect to large instance data that commit to 
an ontology of moderate size. In creating the benchmark, 
we have developed: 
1) An OWL ontology for the university domain. 
2) A technique for synthetically generating instance data 

over that ontology. Importantly, this data can be 
regenerated given only a seed and can be scaled to an 
arbitrary size. Moreover, to make it as realistic as 
possible, the data is generated by obeying to a set of 
restrictions that are elicited from an investigation into 
the domain (e.g. the ratios between instances of 
different classes and the cardinality of different 
properties for individuals of different types). 

3) Fourteen test queries against the instance data. These 
queries have been chosen to represent a variety of 
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properties including input size, selectivity, complexity, 
and assumed logical inference. 

4) A set of performance metrics including data loading 
time, repository size, query response time, and degree 
of query completeness and soundness. We have 
developed these metrics by borrowing from standard 
database benchmarks and at the same time trying to 
address the unique properties of the Semantic Web. 
Later we will have more discussion on this. 

There are several benefits to our benchmarking 
approach. The benchmark facilitates the evaluation of 
systems with respect to two basic and conflicting 
requirements: first, the enormous amount of data means 
that scalability and efficiency become crucial issues; 
second, the system must provide sufficient reasoning 
capabilities to support the semantic requirements of a 
given application. 

Another key benefit of our approach is that it allows us 
to empirically compare very different systems. For 
instance, we have conducted a benchmark experiment on 
the following KBSs: Sesame (Broekstra and Kampman 
2002), DLDB-OWL (Pan and Heflin 2003), and 
OWLJessKB (Kopena and Regli 2003). These systems 
represent distinct points in terms of OWL reasoning 
support as well as reasoning mechanisms. Specifically, 
Sesame supports the RDFS2 language and is incomplete 
with respect to OWL. Its reasoning is forward-chaining 
style. DLDB-OWL uses FaCT (Horrocks 1998), a 
description logic reasoner based on the tableaux 
algorithms, to precompute certain ontological information. 
However, for scalability considerations, DLDB-OWL 
translates queries into SQL and issues them to a relational 
database management system. OWLJessKB uses a 
production system as its underlying reasoner and among 
the systems supports the most OWL reasoning. Moreover, 
these systems differ in their storage mechanisms: 
OWLJessKB manipulates data in main memory while 
DLDB-OWL is based on persistent storage; also we have 
tested both the main memory-based and the database-based 
versions of Sesame (hereinafter we refer to them as 
Sesame-Memory and Sesame-DB respectively). The 
experimental results helped us characterize the 
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performance of each system. In particular, we were able to 
show how these systems compare in terms of the 
performance tradeoff they make and the corresponding 
impact in large data situations. We will give some 
examples of this in the appropriate context later on. 
 The LUBM is a benchmark limited to a particular 
domain. Ideally we should have a suite of benchmarks 
representing different domains with different workloads. In 
light of this, we have extended our work with an approach 
for rapid development of such benchmarks (Wang et al. 
2005). Given training data for a domain, the approach is 
able to learn a model that can be used to generate 
representative synthetic data. Specifically, the algorithm 
extracts certain statistical features of the training data and 
accordingly constructs a probabilistic model (e.g. the 
probability of an individual belonging to a specific class 
and the probability of an individual of a specific class 
having a specific cardinality for a specific property). Then 
based on the model, a Monte Carlo algorithm is used to 
generate synthetic data that has similar properties to the 
training data. This approach helps overcome the problem 
of having insufficient real world data for benchmarking 
and allows us to develop benchmarks for a variety of 
domains and applications in a very time efficient manner. 
 In the remainder of the paper, we will discuss how our 
work is beneficial to the AI community. 

The Semantic Web as a New Test Bed for AI 
and Our Benchmarking Solution 
The Semantic Web envisions a web of ontologies and 
associated data, which will augment the present Web with 
formal semantics. We can view the Semantic Web as a 
new AI problem that aims at representing knowledge in a 
huge, open and distributed environment. Thus existing AI 
research could serve as the starting point in solving the 
problem. At the same time, many issues will arise in 
applying and tailoring the traditional AI techniques and 
systems to the Semantic Web. 
 Frank van Harmelen (2002) has identified some 
assumptions underlying Knowledge Representation (KR) 
that need to be revised when applied to the Semantic Web 
and the associated challenges and issues. In summary, he 
has put forth the following issues: 1) Scale. Much larger 
knowledge bases than traditional KR systems are designed 
for, 2) Higher change rate of information and 
unpredictable use of knowledge, 3) Having to deal with the 
cases that portions of a knowledge base are missing, 4) 
Trust and justification. Statements in a knowledge base 
may be of different level of credibility as well as quality, 
5) Multiple knowledge sources and diversity of content, 6) 
Need for remotely linking to knowledge bases and 
accessing their statements, 7) Robust inferencing with 
possible incompleteness and unsoundness. 
 Our work contributes to addressing some of the above 
issues from a benchmarking point of view. First, we have 
placed great emphasis on the evaluation of systems with 

respect to scalability. A key assumption of our work is that 
future Semantic Web systems will need to reason with 
massive instance data. In particular, we believe that 
instance data will by far outnumber ontologies. This trend 
is already beginning to emerge. According to SWOOGLE 
(Ding, L. et al. 2005), which has indexed over one million 
Semantic Web documents, the ratio of data documents to 
ontologies was about 80 to 1 in 2005, and this gap has 
widened by 40% in 2006. 
 Given that there are no KBS evaluation methods with 
this focus, we have developed a technique for generating 
instance data over the benchmark ontology and this data 
can be scaled to an arbitrary size. This allows us to gain an 
insight into a system’s scalability by testing it against a 
range of sizes of data. For example, in the aforementioned 
experiment, we discovered that Sesame-Memory could 
load a larger size of data than we had expected. 
Furthermore, we were able to identify the data size beyond 
which the performance of Sesame-Memory would go 
down dramatically. 
 The second feature of our work is that we do not assume 
the system under test is complete and sound in reasoning. 
Recall that an inference procedure is complete if it can find 
a proof for any sentence that is entailed by the knowledge 
base. With respect to queries, we say a system is complete 
if it generates all answers that are entailed by the 
knowledge base, where each answer is a binding of the 
query variables that results in an entailed sentence. 
However, in an environment such as the Semantic Web, 
partial answers will often be acceptable. So it is important 
not to measure completeness with such a coarse 
distinction. Instead, we provide metrics for measuring the 
degree of completeness and soundness (abbreviated as doc 
and dos respectively), as follows.  
 entailed: the set of entailed answers to q 
 returned: the set of answers to q returned by the system  
 correct: entailed  returned 
    |correct|      |correct| 
 doc = _____________     dos =  ______________ 
    |entailed|     |returned| 
Note, doc and dos are analogous to the standard metrics of 
recall and precision in Information Retrieval respectively. 
 Notice that the above two metrics are intended to 
complement, not replace, theoretical analysis. Techniques 
such as the alternative semantic accounts (based on 
weaker, 4-valued logics, for example) (Patel-Schneider 
1989) and proof-theoretic semantics (Borgida 1992) can be 
used to characterize the incompleteness of systems. 
However, we would like to point out that just because a 
KBS is incomplete does not mean it will be incomplete for 
a specific application. In particular, we believe there will 
be much redundancy on the Semantic Web: there may be 
many different ways to derive facts and often the derivable 
facts will be stated explicitly elsewhere. Thus we see 
degree of completeness and degree of soundness as 
measures of a KBS’s performance on a specific kind of 
workload (consisting of an ontology, data and queries). 
 Third, in line with the above discussion, we could expect 
a variety of reasoning capabilities and strategies in 



Semantic Web KBSs. Our benchmark is designed to help 
the user measure potential tradeoff associated with those 
factors and answer questions such as if the 
speed/scalability gain is worth the sacrifice in 
reasoning/query completeness. For instance, in the 
experiment we have conducted, compared to OWLJessKB, 
Sesame and DLDB-OWL perform less complete 
reasoning, however, they could generally load data and 
answer queries faster than OWLJessKB. Also, Sesame 
carries out all the inferences during loading. This appears 
to make most queries faster, but results in greater 
repository size and load time and significantly limits the 
ability of the system to load large dataset sizes. 
 As a more concrete example, consider the examination 
of query response time and query completeness at the same 
time. The figure below demonstrates one of our 
recommended ways for doing that. In the chart, we use 
clustered columns to compare query response time, and in 
addition, the percentage of the filled area of each column 
to indicate the degree of query completeness. This kind of 
interpretation makes it easy to compare systems in terms of 
both metrics. For example, for a specific query, the user 
may decide that a system with a fast query time but an 
empty bar should not be favored over a system that is 
slower but with a more complete bar. 

 
Fig. 1. Query Response Time with Query Completeness. 

Applying Our Work to Traditional AI 
As can be seen, although our work evaluates KBSs for 
OWL, our benchmarking approach is not tied to a specific 
language nor it is to the specific area of the Semantic Web. 
For example, the approach could apply when evaluating a 
first-order logic KBS, where the knowledge base consists 
of a set of axioms and ground facts (analogous to OWL 
ontology and instance data respectively). Similarly, the 
system under test could be one that uses KIF as its query 
language as opposed to a more typical Semantic Web 
query language. Also we can use a similar approach to 
evaluate an intelligent agent system that utilizes knowledge 
representation and reasoning techniques to model a 
complex domain with a semantically rich language. 
 At its core, our approach is an attempt to address some 
key questions that are commonly faced by the evaluators 
of any AI KBSs. The first question is how to empirically 
evaluate the system’ s scalability? Scalability can be a 
critical requirement when we are applying AI techniques in 

a large-scale intelligent system, or when we are deploying 
systems in an environment such as the Web. In order to 
evaluate the systems in terms of its scalability, we need 
datasets that are representative enough of the intended 
application and at the same time are of very large sizes. 
However, it may not be easy to acquire satisfactory test 
data from the real world due to that we are interested in an 
emerging field of application, which still lacks real world 
data. Or it could be because that, with the real world data 
available, it is hard to control specific factors such as query 
selectivity and reasoning requirements. Our work 
represents an alternative solution to this issue, that is, we 
can generate synthetic data that simulates the intended 
domain. Moreover, we are open to consider partial answers 
in favor of scalability. This pragmatic approach is what 
fundamentally distinguishes our work from some similar 
performance evaluation approaches in AI. 
 The second important question is how to empirically 
compare and select different KBSs? It is often the case that 
a user is faced with the choice of different classes of 
systems. One such example from the AI literature is when 
the authors try to compare a description logic reasoner 
versus a first-order logic prover (Tsarkov and Horrocks 
2003). Related to the above question is how we evaluate 
systems with respect to conflicting requirements. For 
instance, increased reasoning capability usually means an 
increase in data processing time and/or query response 
time. Oftentimes, it is insufficient to only look at the 
theoretical properties of the systems. For example, 
although some logical reasoners are incomplete with 
respect to the language in question, they may still be useful 
because they scale better or respond to queries more 
quickly. We could further broaden this notion of tradeoff. 
For instance, in the area of intelligent agent, one has to 
continuously deal with resource-boundedness and make 
tradeoff decisions (Lesser et al. 2000). Specifically for 
example, while doing approximate reasoning, a tradeoff 
has to be made between decision quality and 
computational cost (Zilberstein 1995). We can view the 
optimal decision of an intelligent agent as the counterpart 
of sound and complete reasoning of KR. 
 In KR, traditionally it has been accepted that there is a 
tradeoff between scalability and reasoning completeness. 
As such, one of the most enduring challenges in KR is to 
push systems so that they are better in both properties. 
Consider Fig. 2, which we consider roughly represents a 
specific case which most people would find reasonable 
nowadays. A long-term research agenda for KBS 
development is to push the frontier outward. In this regard, 
our approach can help researchers and developers 
understand the-state-of-the-art and identify research issues 
and directions through empirical evaluation of the systems 
and we consider this is equally important as pure 
theoretical analysis. 
 Next, we discuss some work on evaluating KBSs in 
traditional AI literature. The automated theorem prover 
(ATP) competitions (Sutcliffe and Suttner 2004) evaluate 
the performance of sound, classical first order ATP 



 
Fig. 2. Scalability versus Inference Capability 

systems in terms of the number of problems solved and the 
average runtimes for those problems. Since their emphasis 
is on evaluating the reasoning algorithms, they discard 
systems that yield partial answers to the problem. 
 One of the earliest efforts to evaluate large KBSs is 
DARPA’ s High Performance Knowledge Bases (HPKB) 
project (Cohen et al. 1998). They tested knowledge bases 
with different sets of axioms to answer the same set of 
queries. Thus the “completeness” of the system depends as 
much on the axioms the system uses as it does on the 
system’ s inferential capability. By contrast, we evaluate 
systems on identical axioms on data. 
 There has been some effort to benchmark description 
logic systems (Elhaik, Rousset and Ycart 1998, Horrocks 
and Patel-Schneider 1998). Their benchmark data consist 
of TBoxes and/or ABoxes, which can be seen as the 
Semantic Web counterparts of ontologies and instance data 
respectively. In the work of Elhaik, Rousset and Ycart, the 
ABox is randomly generated. However, unlike our 
benchmark data, the ABox is not customizable and 
repeatable. They also generate the TBox randomly while 
our benchmark is based on a realistic ontology. In 
Horrocks and Patel-Schneider’ s work, they use both 
artificial and realistic TBoxes and use synthetic ABoxes. 
Since like the ATP competitions, their emphasis is on 
evaluating the reasoning algorithms, they assume sound 
and complete reasoners. As a result, they have not been 
able to test the systems with increased sizes of ABoxes due 
to their poor performance. 

Conclusion 
We described our approach to benchmarking Semantic 
Web KBSs. We have shown that our work contributes to 
address new AI problems that are represented by the 
Semantic Web in the setting of benchmarking. Moreover, 
we have discussed how our work could be applied to 
general AI research in knowledge representation. The 
underlying ideas and methodologies could serve as the key 
to answer the general questions of how to evaluate the 
scalability of the system; how to evaluate the potential 
performance tradeoff in the system; and how to compare 
systems that are very different in their development 
philosophy and design choice. Furthermore, since many AI 
systems depend on a knowledge base component (e.g. 
intelligent agents, natural language processing systems, 
etc.), this work can be used to evaluate these components 
and aid in improving the scalability of these systems. 
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