
An Evaluation of Knowledge Base Systems for Large
OWL Datasets

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin

Computer Science & Engineering Department, Lehigh University, Bethlehem, PA18015,
USA

{yug2, zhp2, heflin}@cse.lehigh.edu

Technical Report: LU-CSE-04-012

Abstract. In this paper, we present our work on evaluating knowledge base sys-
tems with respect to use in large OWL applications. To this end, we have de-
veloped the Lehigh University Benchmark (LUBM). The benchmark is in-
tended to evaluate knowledge base systems with respect to extensional queries
over a large dataset that commits to a single realistic ontology. LUBM features
an OWL ontology modeling university domain, synthetic OWL data generation
that can scale to an arbitrary size, fourteen test queries representing a variety of
properties, and a set of performance metrics. We describe the components of the
benchmark and some rationale for its design.

Based on the benchmark, we have conducted an evaluation of four knowledge
base systems (KBS). To our knowledge, no experiment has been done with the
scale of data used here. The smallest dataset used consists of 15 OWL files to-
taling 8MB, while the largest dataset consists of 999 files totaling 583MB. We
evaluated two memory-based systems (OWLJessKB and memory-based Ses-
ame) and two systems with persistent storage (database-based Sesame and
DLDB-OWL). We show the results of the experiment and discuss the perform-
ance of each system. In particular, we have concluded that existing systems
need to place a greater emphasis on scalability.

1 Introduction

Various knowledge base systems (KBS) have been developed for processing Semantic
Web information. They vary in a number of important ways. Many KBSs are main
memory-based while others use secondary storage to provide persistence. Another key
difference is the degree of reasoning provided by the KBS. Many systems are incom-
plete with respect to OWL [10], but still useful because they scale better or respond to
queries quickly.

In this paper, we consider the issue of how to choose an appropriate KBS for a
large OWL application. Here, we consider a large application to be one that requires
the processing of megabytes of data. Generally, there are two basic requirements for
such systems. First, the enormous amount of data means that scalability and efficiency
become crucial issues. Second, the system must provide sufficient reasoning capabili-
ties to support the semantic requirements of the application. However, increased rea-
soning capability usually means an increase in query response time as well. An impor-

tant question is how well existing systems support these conflicting requirements. Fur-
thermore, different applications may place emphasis on different requirements.

It is difficult to evaluate KBSs with respect to these requirements, particularly in
terms of scalability. The main reason for this is that there are few Semantic Web data-
sets that are of large size and commit to semantically rich ontologies. The Lehigh
University Benchmark is our effort in order to fill this gap. We have developed the
benchmark to facilitate the evaluation of those KBSs in a standard and systematic
way. The benchmark contains a simulated ontology for the university domain and sup-
ports generating extensional data in arbitrary sizes. It offers fourteen test queries over
the data. It also provides a set of performance metrics and related facilities for the
evaluation.

By making use of the benchmark, we have performed an evaluation of four KBSs
for the Semantic Web from several different aspects. We have evaluated two memory-
based systems (OWLJessKB and memory-based Sesame) and two systems with per-
sistent storage (database-based Sesame and DLDB-OWL). We present our experi-
ment, discuss the performance of each system, and show some interesting observa-
tions. Based on that, we highlight some issues with respect to the development and
improvement of the same kind of systems, and suggest some potential ways in using
and developing those systems.

The outline of the paper is as follows: Section 2 elaborates on the Lehigh Univer-
sity Benchmark. Section 3 describes the aforementioned experiment and discusses the
results. Section 4 talks about related work. Section 5 concludes.

2 Lehigh University Benchmark for OWL

We have developed the Lehigh University Benchmark (LUBM) to evaluate the per-
formance of Semantic Web KBSs with respect to extensional queries over a large
dataset that commits to a single realistic ontology. Extensional queries are queries
about the instance data of ontologies. Recognizing that on the Semantic Web, data
will by far outnumber ontologies, we wanted to develop a benchmark for this. There-
fore, we chose to generate large amount of data for a single ontology of moderate size.
LUBM was originally developed for the evaluation of DAML+OIL [9] repositories
[13]. As OWL became the W3C recommendation, we have extended the benchmark
to provide support for OWL ontologies and datasets. We introduce the key compo-
nents of the benchmark suite below.

2.1 Benchmark Ontology

The ontology used in the benchmark is called Univ-Bench. Univ-Bench describes uni-
versities and departments and the activities that occur at them. Its predecessor is the
Univ1.0 ontology1, which has been used to describe data about actual universities and
departments. We chose this ontology expecting that its domain would be familiar to

1 http://www.cs.umd.edu/projects/plus/DAML/onts/univ1.0.daml

most of the benchmark users. The ontology currently defines 43 classes and 32 prop-
erties.

We have created the Univ-Bench ontology OWL version 2. The ontology is in
OWL Lite, the simplest sublanguage of OWL. We chose to restrict the ontology (and
also the test data) to OWL Lite since there are known complete and sound algorithms
for the logic underpinning the language and are already some efficient reasoning sys-
tems available for it, e.g., Racer [16] and FaCT++3.

As with its DAML+OIL version4, the ontology contains specific language features
that are useful for the benchmark. For instance, originally the Univ1.0 ontology states
that GraduateStudent is a subclass of Student. In creating the Univ-Bench ontology,
we have replaced that definition with what is shown in Fig. 1 using restriction. As a
result, the subclass relationship between both the classes GraduateStudent and Student
must be inferred using OWL semantics.

<owl:Class rdf:ID="GraduateCourse">
 <rdfs:label>Graduate Level Courses</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Course" />
</owl:Class>

<owl:Class rdf:ID="GraduateStudent">
 <rdfs:label>graduate student</rdfs:label>
 <rdfs:subClassOf rdf:resource="#Person" />
 <rdfs:subClassOf>
 <owl:Restriction>
 <owl:onProperty rdf:resource="#takesCourse" />
 <owl:someValuesFrom>
 <owl:Class rdf:about="#GraduateCourse" />
 </owl:someValuesFrom>
 </owl:Restriction>
 </rdfs:subClassOf>
</owl:Class>

<owl:Class rdf:ID="Student">
 <rdfs:label>student</rdfs:label>
 <owl:intersectionOf rdf:parseType="Collection">
 <owl:Class rdf:about="#Person" />
 <owl:Restriction>
 <owl:onProperty rdf:resource="#takesCourse" />
 <owl:someValuesFrom>
 <owl:Class rdf:about="#Course" />
 </owl:someValuesFrom>
 </owl:Restriction>
 </owl:intersectionOf>
</owl:Class>

Fig. 1. Definition of the classes GraduateStudent and Student

2 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl
3 http://owl.man.ac.uk/factplusplus/
4 http://www.lehigh.edu//~zhp2/univ-bench.daml

In addition to the language change, there are some other differences between the
ontology’s OWL version and DAML+OIL version. First, we have used more RDFS
vocabulary in the OWL ontology, e.g., rdfs:domain and rdfs:range in replace of
daml:domain and daml:range respectively. Secondly, we have made some domain
constraint changes to allow emphasis on description logic subsumption. For example,
we have removed the domain constraint (to the class Student) of the property take-
sCourse so that no individuals of GradudateStudent in the benchmark data can be in-
ferred as an instance of Student without the inference of the subsumption relationship
between both classes.

2.2 Data Generation and OWL Datasets

LUBM’s test data are extensional data created over the Univ-Bench ontology. In
LUBM, we have adopted a method of synthetic data generation. This serves multiple
purposes. As with the Wisconsin benchmark [3, 4], a standard and widely used data-
base benchmark, this allows us to control the selectivity and output size of each test
query. However, there are some other specific considerations:

1) We would like the benchmark data to be of a range of sizes including considera-
bly large ones. It is hard to find such data sources that are based on the same on-
tology.

2) We may need the presence of certain kinds of instances in the benchmark data.
This allows us to design repeatable tests for as many representative query types as
possible. These tests not only evaluate the storage mechanisms for Semantic Web
data but also the techniques that exploit formal semantics. We may rely on in-
stances of certain classes and/or properties to test against those techniques.

Data generation is carried out by the Univ-Bench artificial data generator (UBA), a
tool we have developed for the benchmark. In the tool, we have implemented the sup-
port for OWL datasets. The generator features random and repeatable data generation.
A university is the minimum unit of data generation and for each university, a set of
OWL files describing its departments are generated. Instances of both classes and
properties are randomly decided. To make the data as realistic as possible, some re-
strictions are applied based on common sense and domain investigation. Examples are
“a minimum of 15 and a maximum of 25 departments in each university”, “an under-
graduate student/faculty ratio between 8 and 14 inclusively”, “each graduate student
takes at least 1 but at most 3 courses”, and so on and so forth. A detailed profile of the
data generated by the tool can be found on the benchmark’s webpage.
 The generator identifies universities by assigning them zero-based indexes, e.g., the
first university is named University0, and so on. Data generated by the tool are exactly
repeatable in respect of universities. This is possible because the tool allows the user
to enter an initial seed for the random number generator that is used in the data gen-
eration process. Through the tool, we may specify how many and which universities to
generate.
 Finally, as with the Univ-Bench ontology, the OWL data created by the generator
are also in the OWL Lite sublanguage. As a consequence, we have had to give every

individual ID appearing in the data a type/class and include in every document an on-
tology tag (the owl:Ontology element)5.

2.3 Test Queries

LUBM currently offers fourteen test queries, one more than when it was originally de-
veloped. Readers are referred to Appendix 1 for a list of these queries. In choosing the
queries, first of all, we wanted them to be realistic. Meanwhile, we have mainly taken
into account following factors:

1) Input size. This is measured as the proportion of the class instances involved in
the query to the total class instances in the benchmark data. Here we refer to not
just class instances explicitly expressed but also those that are entailed by the
knowledge base. We define the input size as large if the proportion is greater than
5%, and small otherwise.

2) Selectivity. This is measured as the estimated proportion of the class instances in-
volved in the query that satisfy the query criteria. We regard the selectivity as
high if the proportion is lower than 10%, and low otherwise. Whether the selec-
tivity is high or low for a query may depend on the dataset used. For instance, the
selectivity of Queries 8, 11 and 12 is low if the dataset contains only University0
while high if the dataset contains more than 10 universities.

3) Complexity. We use the number of classes and properties that are involved in the
query as an indication of complexity. Since we do not assume any specific im-
plementation of the repository, the real degree of complexity may vary by systems
and schemata. For example, in a relational database the number may directly indi-
cate the times of join, which is a significant operation, or may not depending on
the schema design.

4) Assumed hierarchy information. This considers whether information of class hi-
erarchy or property hierarchy is required to achieve the complete answer. (We de-
fine completeness in next subsection).

5) Assumed logical inference. This considers whether logical inference is required
to achieve the completeness of the answer. OWL features used in the test queries
include subsumption, i.e., inference of implicit subclass relationship, Transi-
tiveProperty, inverseOf, and realization, i.e., inference of the most specific con-
cepts that an individual is an instance of. One thing to note is that we are not
benchmarking complex description logic reasoning. We are concerned with ex-
tensional queries. Some queries use simple description logic reasoning mainly to
verify that this capability is present.

We have chosen test queries that cover a range of types in terms of the above crite-
ria. At the same time, to the end of performance evaluation, we have emphasized que-
ries with large input and high selectivity. If not otherwise noted, all the test queries are
of this type. Some subtler factors have also been considered in designing the queries,

5 In OWL, the notion of the term ontology differs from that in the traditional sense by also in-

cluding instance data [31].

such as the depth and width of class hierarchies6, and the way the classes and proper-
ties chain together in the query.

To express the benchmark queries, we use a language in which a query is written as
a conjunction of atoms. The language syntactically resembles KIF [12] but has less
expressivity. We did not select from existing query language for RDF/OWL such as
RQL [23], RDQL [29] or TRIPLE [30] since none of them has proven dominant. The
simple language we use provides us with minimal while sufficient expressivity (i.e.,
existentially quantified conjunction of first-order logic atoms) and could be easily
translated into any of the RDF/OWL query languages.

2.4 Performance Metrics

In addition, LUBM consists of a set of performance metrics including load time, re-
pository size, query response time, query completeness and soundness, and a combined
metric for the query performance. Among these metrics: the first three are standard da-
tabase benchmarking metrics - query response time was introduced in the Wisconsin
benchmark, and load time and repository size have been commonly used in other database
benchmarks, e.g., the OO1 benchmark [8]; query completeness and soundness are new
metrics we developed for the benchmark. We address these metrics in turn below.

Load Time
In a LUBM dataset, every university contains 15 to 25 departments, each described by
a separate OWL file. These files are loaded to the target system in an incremental fash-
ion. We measure the load time as the stand alone elapsed time for storing the specified
dataset to the system. This also counts the time spent in any processing of the ontology and
source files, such as parsing and reasoning.

Repository Size
Repository size is the consequent size of the repository after loading the specified bench-
mark data into the system. We only measure the consequent database sizes for the data-
base based systems. We do not measure the occupied memory sizes for the main mem-
ory-based systems because it is difficult to accurately calculate them. However, since
we evaluate all systems on a platform with a fixed memory size, the largest dataset that
can be handled by a system provides an indication of its memory efficiency.

Query Response Time
Query response time is measured based on the process used in database benchmarks.
To account for caching, each query is executed for ten times consecutively and the av-
erage time is computed. Specifically, the benchmark measures the query response time
as the following:

 For each target repository:
For each test query:

6 We define a class hierarchy as deep if its depth is greater than 3, and as wide if its average

branching factor is greater than 3.

 Open the repository.
Execute the query on the repository consecutively for 10 times and
compute the average response time. Each time:

Issue the query, obtain the pointer to the result set, traverse
that set sequentially, and collect the elapsed time.

 Close the repository

Query Completeness & Soundness
We also examine query completeness and soundness of each system. In logic, an in-
ference procedure is complete if it can find a proof for any sentence that is entailed by
the knowledge base. With respect to queries, we say a system is complete if it gener-
ates all answers that are entailed by the knowledge base, where each answer is a bind-
ing of the query variables that results in an entailed sentence. However, on the Seman-
tic Web, partial answers will often be acceptable. So it is important not to measure
completeness with such a coarse distinction. Instead, we measure the degree of com-
pleteness of each query answer as the percentage of the entailed answers that are re-
turned by the system. Note that we request that the result set contains unique answers.

In addition, as we will show in next section, we have realized that query soundness
is also worthy of examination. With similar argument to the above, we measure the
degree of soundness of each query answer as the percentage of the answers returned
by the system that are actually entailed.

Combined Metric (CM)
The target systems in an evaluation may differ a lot in their inference capability. We
feel it is insufficient to evaluate the query response time and answer completeness and
soundness in isolation. We need a metric to measure them in combination so as to bet-
ter appreciate the overall performance of a system and the potential tradeoff between
the query response time and inference capability. At the same time, we have realized
that this is a challenging issue. We introduce here our attempt to address this issue.

First, we use an F-Measure [28, 25] like metric to compute the tradeoff between
query completeness and soundness, since essentially they are analogous to recall and
precision in Information Retrieval. In the formula below, Cq and Sq (�[0, 1]) are the
answer completeness and soundness for query q. �determines the relative weighting
of Sq and Cq. As will be shown in next section, some system might fail to answer a
query. In that case, we will use Fq of zero in the calculation.

qq

qq
q

SC
SC

F �
�
*

**)1(
2

2

E
E

Then, we define a composite metric CM of query response time and answer com-
pleteness and soundness as the following, which is also inspired by F-Measure:

¦ � �
� M

q
qq

qq

FP
FP

M
CM

1 2

2

*
**)1(1

D
D

In the above, M is the total number of test queries; Pq � [0, 1] is a query perform-
ance metric defined as

Pq = max (1 –
N

Tq
, ��

Tq is the response time (ms) for query q and N is the total number of triples in the
dataset concerned. To allow for comparison of the metric values across datasets of dif-

ferent sizes, we use the response time per triple (i.e.,
N

Tq
) in the calculation. Also we

use a timeout value to eliminate undue affect of those query response time that is ex-
tremely far away from others in the test results: if to a certain query q, a system’ s re-
sponse time per triple is greater than 1- ��where is a very small positive value, we
ZLOO�XVH� �IRU�3q instead. �has the same role as in Fq.

Generally speaking, the CM metric will reward those systems that can answer que-
ries faster, more completely and more soundly.

2.5 Benchmarking Architecture

Fig. 2 depicts the architecture of the benchmarking. LUBM prescribes an interface to
be instantiated by each target system. Through the interface, the benchmark test mod-
ule launches the loading process, requests operations on the repository (e.g. open and
close), issues queries and obtains the results. Users inform the test module of the target
systems and test queries by defining them in the KBS configuration file and query defini-
tion file respectively. It needs to be noted that queries are translated from the above men-
tioned KIF-like language into the query language supported by the system prior to being is-
sued to the system. In this way, we want to eliminate affect of query translation to the query
response time. The translated queries are fed to the tester through the query definition file.
The tester just reads the lines of each query from the definition file and passes them to the
system.

 KBS n

 KBS 1

LUBM

Data Generator

Query
Definition

KBS
Configuration

Benchmark Data

Test Module

Benchmark Interface Benchmark Interface

Fig. 2. Architecture of the benchmarking

The benchmark suite is accessible at
http://www.lehigh.edu/~yug2/Research/SemanticWeb/LUBM/LUBM.htm.

3 An Evaluation Using LUBM

Using LUBM, we have conducted an evaluation of four systems. We describe the
evaluation next.

3.1 Target Systems

In this experiment, we wanted to evaluate the scalability and support for OWL Lite in
various systems. In choosing the systems, first we decided to consider only non-
commercial systems. Moreover, we did not mean to carry out a comprehensive evalua-
tion of the existing Semantic Web KBSs. Instead, we wanted to evaluate systems with
a variety of characteristics. Additionally, we believe a practical KBS must be able to
read OWL files, support incremental data loading, and provide programming APIs for
loading data and issuing queries. As a result, we have settled on four different knowl-
edge base systems, including two implementations of Sesame, OWLJessKB, and
DLDB-OWL. We briefly describe each system below.

Sesame [6] is a repository and querying facility based on RDF and RDF Schema
[34]. It features a generic architecture that separates the actual storage of RDF, func-
tional modules offering operation on this RDF, and communication with these func-
tional modules from outside the system. Sesame supports RDF/RDF Schema infer-
ence, but is an incomplete reasoner for OWL Lite. Nevertheless, it has been used on a
wide number of Semantic Web projects. Sesame can evaluate queries in RQL,
SeRQL7, and RDQL. We evaluate two implementations of Sesame, main memory-
based and database-based.

OWLJessKB, whose predecessor is DAMLJessKB [24], is a memory-based rea-
soning tool for description logic languages, particularly OWL. It uses the Java Expert
System Shell (Jess) [21], a production system, as its underlying reasoner. Current
functionality of OWLJessKB is close to OWL Lite plus some. We evaluate it as a sys-
tem that supports most OWL entailments.

The fourth system, DLDB-OWL [27], is a repository for processing, storing, and
querying large amounts of OWL data. Its major feature is the extension of a relational
database system with description logic inference capabilities. Specifically, DLDB-
OWL uses Microsoft Access® as the DBMS and FaCT [18] as the OWL reasoner. It
uses the reasoner to precompute subsumption and employs relational views to answer
extensional queries based on the implicit hierarchy that is inferred.

7 http://www.openrdf.org/doc/users/ch06.html

Originally, we had targeted four other systems. The first is Jena [20], a Java
framework for building Semantic Web applications. Jena currently supports both
RDF/RDFS and OWL. We have done some preliminary tests on Jena (v2.1) (both
memory-based and database-based) with our smallest dataset (cf. Appendix 3). Com-
pared to Sesame, the most similar system to Jena here, Jena with RDFS reasoning was
much slower in answering nearly all the queries. Some of the queries did not terminate
even after being allowed to run for several hours. The situation was similar when
Jena’ s OWL reasoning was turned on. For this reason, we have decided not to include
Jena in the evaluation.

The second is KAON [22], an ontology management infrastructure. KAON pro-
vides an API for manipulating RDF models, however, it does not directly support
OWL or RDFS in its framework.

We had also considered TRIPLE and Racer. TRIPLE [30] is an RDF query, infer-
ence, and transformation language and architecture. Instead of having a built-in se-
mantics for RDF Schema, TRIPLE allows the semantics of languages on top of RDF
to be defined with rules. For languages where this is not easily possible, TRIPLE also
provides access to external programs like description logic classifiers. We were un-
able to test TRIPLE because it does not support incremental file loading and it does
not provide a programming API either.

Racer [16] is a description logic inference engine currently supporting RDF,
DAML+OIL and OWL. Running as a server, Racer provides inference services via
HTTP or TCP protocol to client applications. Racer researchers have recently imple-
mented a new query language nRQL. This language can be used to express all the cur-
rent queries of LUBM and thus has made it possible to test Racer against the bench-
mark. In fact, they have already conducted such a performance evaluation of Racer
(v1.8) using LUBM [17]. The results showed that Racer could offer complete answers
for all the queries if required (they have tested Racer on Queries 1 through 13). How-
ever, since it has to perform Abox consistency check before query answering, Racer
was unable to load a whole university dataset. As a result, they have only loaded up to
5 departments to Racer on a P4 2.8GHz 1G RAM machine running Linux. Due to this
scalability limitation, we have decided not to re-test Racer.

Finally, we understand that there are other systems that could also fit into the
benchmark. As noted above, this work is not intended to be a comprehensive evalua-
tion of the existing KBSs. For some of those systems, we did not consider them be-
cause they are functionally close to one of the systems we have chosen, e.g., the ICS-
FORTH RDFSuite [2] is similar to Sesame in that they are both an RDF store. We
also understand that it is possible that these systems may outperform the systems we
present here in some aspect. Those who are interested in evaluating these systems
could always conduct an experiment with LUBM in a similar fashion.

3.2 Experiment Setup

System Setup
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and OWL-
JessKB (04-02-23 release). As noted, we test both the main memory-based and data-

base-based implementations of Sesame. For brevity, we hereafter refer to them as Ses-
ame-Memory and Sesame-DB respectively. For both of them, we use the implementa-
tion with RDFS inference capabilities. For the later, we use MySQL (v4.0.16) as the
underlying DBMS since in a test by [6] Sesame performs significantly better than us-
ing the other DBMS PostgreSQL8. The DBMS used in DLDB-OWL is MS Access®
2002. We have created a wrapper over each system as an interface to the benchmark’ s
test module.

Datasets
To identify the dataset, we use the following notation in the subsequent description:

LUBM(N, S): The dataset that contains N universities beginning at University0 and
is generated using a seed value of S.

We have created 5 sets of test data9: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0),
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50
universities respectively, the largest one having over 6,800,000 triples in total. To our
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000
statements. We have easily exceeded that by virtue of the benchmark supporting tool.

Query Test
For query test, the fourteen benchmark queries are expressed in RQL, Jess, and the
KIF-like language and issued to Sesame, OWLJessKB, and DLDB-OWL respectively.
As explained earlier, we do not use a common language in the test to eliminate affect
of query translation to the query response time.

Query response time is collected in the way defined by the benchmark. Note that
instead of providing a result set that can be iterated through, Sesame returns data one-
at-a-time in streams and calls back user specified functions upon each result item.
Thus we regard those call backs as the result traverse that is required by the bench-
mark, and count them in the query time instead.

As another detail, OWLJessKB only supports queries written in Jess language [21],
and it needs two separate phrases to perform a query: define it and execute it. Interest-
ingly, we have found out that the ordering of statements within a query can affect the
response time of OWLJessKB to that query. It turned out that a direct translation of
the benchmark queries resulted in poor performance from OWLJessKB after the one-
university dataset is loaded. It even ran out of memory at some query (e.g., Query 2).
However, if we do a reordering of the statements and put property related statements
prior to the type related statements in each query, the response time could be reduced
significantly. Therefore, in the experiment we use this non-standard approach to issue
our test queries to OWLJessKB to get comparable results. Although we do it manu-
ally, such a reordering could be easily automated.

In addition, in our original experiment we have made use of the feature of Jess to
pre-define the patterns for each test query prior to loading any data. However, we have
newly found out that this could lead to worse performance of OWLJessKB. Since we

8 http://www.postgresql.org
9 The version of the data generator is UBA1.6.

have found no guidance as to when to or not to use such kinds of patterns, we will
show the results of OWLJessKB with both settings in the subsequent discussion.
When distinguishment is necessary, we will refer to them as OWLJessKB-P and
OWLJessKB-NP respectively.

Test environment
We have done the test on a desktop computer. The environment is as follows:

 1.80GHz Pentium 4 CPU;
 256MB of RAM; 80GB of hard disk
 Windows XP Professional OS;
 Java SDK 1.4.1; 512MB of max heap size

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly.
With the standard setting for max heap size in Java, the system failed to load the one-
university dataset due to out of memory errors. As a workaround, we increased the
maximum heap size to 1GB, which requests large amount of virtual memory from op-
erating system. This change allowed OWLJessKB to properly load the dataset.

3.3 Results and Discussions

3.3.1 Data Loading

Table 1. Load time and repository sizes

 Dataset File # Triple # Load Time
(hh:mm:ss)

Repository Size
(KB)

DLDB-OWL 00:05:43 16,318
Sesame-DB 00:09:02 48,333

Sesame-Memory 00:00:13 -

OWLJessKB-P 03:16:12 -

OWLJessKB-NP

LUBM
(1, 0) 15 103,397

02:19:18 -

DLDB-OWL 00:51:57 91,292
Sesame-DB 03:00:11 283,967

Sesame-Memory 00:01:53 -
OWLJessKB

LUBM
(5, 0) 93 646,128

- -
DLDB-OWL 01:54:41 184,680
Sesame-DB 12:27:50 574,554

Sesame-Memory 00:05:40 -
OWLJessKB

LUBM
(10, 0) 189 1,316,993

- -
DLDB-OWL 04:22:53 388,202
Sesame-DB 46:35:53 1,209,827

Sesame-Memory - -
OWLJessKB

LUBM
(20, 0) 402 2,782,419

- -
DLDB-OWL 12:37:57 958,956
Sesame-DB - -

Sesame-Memory - -
OWLJessKB

LUBM
(50, 0) 999 6,890,933

- -

Fig. 3. Load time and repository sizes. The left hand figure shows the load time. The
right hand figure shows the repository sizes of the database-based systems.

Table 1 shows the data loading time for all systems and the on-disk repository sizes
of DLDB-OWL and Sesame-DB. Fig. 3 depicts how the load time grows as the data-
set size increases and compares the repository sizes of the two database-based sys-
tems.

The test results have reinforced scalability as an important issue and challenge for
Semantic Web knowledge base systems. One of the first issues is how large of a data-
set each system can handle. As expected, the memory-based systems did not perform
as well as the persistent storage systems in this regard. OWLJessKB, could only load
the 1-university dataset, and took over 15 times longer than any other system to do so.
On the other hand, we were surprised to see that Sesame-Memory could load up to 10
universities, and was able to do it in 5% of the time of the next fastest system. How-
ever, for 20 or more universities, Sesame-Memory also succumbed to memory limita-
tions.

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale datasets than what has been reported so far. The result reveals an
apparent problem for Sesame-DB: it does not scale in data loading, as can be seen
from Fig. 3. As an example, it took over 300 times longer to load the 20-university
dataset than the 1-university dataset, although the former set contains only about 25
times more triples than the later. We extrapolate that it will take Sesame-DB over 3
weeks to finish up loading the 50-university dataset. Therefore, we have decided not
to do that unrealistic test.

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the
different performance of the two systems is caused by the following two reasons. First,
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained
in a table. When a resource is encountered during the data loading, they will look up
that table to determine if it has not been seen before and needs to be assigned a new
ID. As mentioned in [27], querying the ID table every time is very likely to slow down
the data loading as the data size grows. In its implementation, Sesame also assigns
every literal an ID, while DLDB-OWL stores literals directly in the destination tables,
which means Sesame has to spend even more time on ID lookup. Moreover, in order

to improve performance, DLDB-OWL caches resource-ID pairs during current load-
ing.

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support
statement deletions it uses a truth maintenance system to track all deductive dependen-
cies between statements. As [5] shows, this appears to affect the performance signifi-
cantly if there are many inferred statements or the dataset is fairly large. We should
note that this scalability problem was not as noticeable in our previous study involving
a DAML+OIL benchmark [14]. We believe this is because the prior experiment used
daml:domain (as opposed to rdfs:domain) in its ontology, which does not trigger in-
ferences in Sesame.

3.3.2 Query Response Time
Readers are referred to Appendix 2 for a complete list of query test results including
query response time, number of answers, and query completeness. Fig. 4 and Fig. 5
compares by graphs the query response time of the systems from two different views.
Fig. 4 compares the performance of all the queries with respect to each dataset while
Fig. 5 compares the query response time across all the datasets with respect to each
query.

Fig. 4. Query response time comparison with respect to each dataset (up to 20 universities)

Fig. 5. Query response time comparison between DLDB-OWL, Sesame-DB, Sesame-Memory,
and OWLJessKB-NP with respect to each query (up to 20 universities)

In terms of query, the results also lead to some scalability and efficiency concerns.
Sesame-DB was very slow in answering some queries (even for one university), in-
cluding Queries 2, 8, and 9. As for DLDB-OWL, it is the only system that has been
tested with the largest dataset. One concern is that when it comes to the larger datasets
especially the 50-university set, DLDB-OWL’ s query time no longer grows linearly
for some queries, i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer
Query 2 on the 50-univeristy dataset after MS Access ran out of temporary space. Re-
garding OWLJessKB, compared to the performance of its predecessor DAMLJessKB
in [14], OWLJessKB improves its query time greatly at the sacrifice of much longer
load time. Nonetheless, when OWLJessKB is queried with pre-defined patterns it is
still the slowest in answering thirteen of the queries. However, it responds to the que-
ries much faster when such patterns are not used and outperforms the database-based
systems for quite a few queries. Compared to other systems, Sesame-Memory is the
fastest in answering almost all the queries. It is also the fastest in data loading. This
suggests that it might be the best choice for data of small scale if persistent storage
and OWL inference is not required.

We have observed that those queries for which Sesame-DB’ s performance goes
down dramatically are common in that they do not contain a specific URI as a subject
or object in the statements. On the other hand, Sesame-DB shows a nice property in
answering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional
increase in the response time as the data size grows. We have also noticed a common
feature of these queries, i.e., they have constant number of results over the test data-
sets. Whether these are the causes or coincidences is a subject for future work.

It is beyond the scope of this paper to analyze in depth the query evaluation and op-
timization mechanism in each system. Instead, we propose some topics for future in-
vestigation. One is to explore the potential relationship between query types and the
performance of a certain system and its characteristics. Of course how to categorize
queries is yet another issue. As another, Sesame-DB implements the main bulk of the
evaluation in its RQL query engine while its query engine for another query language
SeRQL pushes a lot of the work down to the underlying DBMS. As for DLDB-OWL,
it directly translates as much of the query for the database. Further work should be
done to investigate how these design differences as well as the underlying DBMS used
impact performance.

3.3.3 Query Completeness and Soundness
It was noted before that we have chosen the benchmark test queries according to sev-
eral criteria. In addition, we have made effort to make those queries as realistic as
possible. In other words, we want these queries to represent, to some extent, those in
the real world. We are very interested in seeing what queries can be answered by each
system.

Fig. 6. Query completeness comparison. We show the results of only the first dataset since
there are only minor if not no differences between the five datasets.

Fig. 6 depicts the comparison of query completeness between the systems. As men-
tioned, Sesame is able to address RDF/RDFS semantics while DLDB-OWL and
OWLJessKB integrate extra OWL inference capability. As the results turned out, all
systems could answer Queries 1 through 5 and Query 14 completely. As we expected,
DLDB-OWL was able to find all the answers for Queries 6 to 10, which requires sub-
sumption inference in order to get complete results, while Sesame could only find par-
tial or no answers for them. It is interesting to notice that DLDB-OWL and Sesame
found complete answers for Query 5 in different ways: DLDB-OWL made use of sub-
sumption, while Sesame, although not able to figure out the subsumption, used an
rdfs:domain restriction to determine the types of the individuals in the dataset and thus
achieved the same result. OWLJessKB could find all the answers for every query, and
was the only system to answer Queries 11 and 13 completely, which assume
owl:TransitiveProperty and owl:inverseOf inference respectively. Nevertheless, we
have discovered that OWLJessKB made unsound inferences with respect to some que-
ries. Specifically, it returned incorrect answers to Queries 4, 6, 8, and 12 because it in-
correctly inferred that Lecturer is a Professor, Employee a Student, and Student a
Chair. We list in Table 2 the soundness of OWLJessKB for each query.

Table 2. Query soundness of OWLJessKB.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Correct answers
/Total answers 4/4 0/0 6/6 34/41 719/719 7790/

8330 67/67 7790/
8330

208/20
8 4/4 224/22

4 15/540 1/1 5916/591
6

Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100

3.3.4 Combined Metric Values
We have calculated the combined metric value of each target system with respect to
each dataset. :H�XVH� �RI��������LQ�WKLV�HYDOXDWLRQ� We set both and to 1, which
means we equally weight query completeness and soundness, and also query response

time and Fq (cf. Section 2.4). Fig. 7 shows the results. We find that these numerical re-
sults are very helpful for us to appreciate the overall performance of each system. The
higher values Sesame-Memory gets than Sesame-DB again suggest that it is a reason-
able choice for small scale application if persistent storage is not required, particularly
if completeness is not significant. DLDB-OWL achieves higher scores across all the
datasets than Sesame. This helps us believe that its extra inference capability is not
counterproductive. OWLJessKB-NP receives the highest value for the smallest data-
set. However, the extremely long load time of OWLJessKB and its failure of loading
larger datasets emphasize the need of performance improvement in that regard. More-
over, the great gap between the evaluation of OWLJessKB-P and OWLJessKB-NP
suggests the necessity of a standard usage guidance of the system from the developers.

Fig. 7. CM values with weights ��DQG� �

4 Related Work

To the best of our knowledge, the Lehigh University Benchmark is the first one for
Semantic Web knowledge base systems in the area. There is a research work in
benchmarking RDF schemata, which performs statistical analysis about the size and
morphology of RDF schemata [26]. However this work does not provide a benchmark
for evaluating a repository. In [1], they have developed some benchmark queries for
RDF, however, these are mostly intensional queries, while we are concerned with ex-
tensional queries for OWL.

We have referred to several database benchmarks, including the Wisconsin bench-
mark [3, 4], the OO1 benchmark [8], and the SEQUOIA 2000 benchmark [32]. They
are all DBMS-oriented benchmarks and storage benchmarks (vs. visualization bench-
marks). LUBM shares in spirit with them methodology and rationale in terms of the
use of synthetic data, some criteria for choosing test queries, and three of the perform-
ance metrics. However, our benchmark is tailored to the evaluation of OWL knowl-
edge base systems and thus has many unique features. Particularly as shown in the

previous sections, the benchmark contains an ontology, data sets, test queries and crite-
ria that reflect special concepts, structures and concerns in the Semantic Web area
such as classes and properties, logical completeness vs. system performance, etc.
Moreover, our benchmark is intended to work with any OWL repositories, not just da-
tabase systems.

Some attempts have been done to benchmark description logic systems [11, 19].
The emphasis of this work is to evaluate the reasoning algorithms in terms of the
tradeoff between expressiveness and tractability in description logic. Our benchmark is
not a description logic benchmark. We are more concerned about the issue of storing
and querying large amount of data that are created for realistic Semantic Web systems.
In [11] and [19], they test the systems with respect to knowledge bases composed of a
Tbox and an Abox, which can essentially be viewed as the counterparts of the ontology
and the data set in our benchmark respectively. In [19] they use both artificial and real-
istic Tboxes and use synthetic Aboxes. But the Aboxes in the test are of fixed sizes. In
contrast, our benchmark data can scale to arbitrary size. The Abox is randomly gener-
ated in [11]. However, unlike our benchmark data, the Abox is not customizable and
repeatable. They also generate the Tbox randomly while our benchmark is based on a
realistic ontology.

The Web Ontology Working Group provides a set of OWL test cases [7]. They are
intended to provide examples for, and clarification of, the normative definition of
OWL and focus on the completeness and soundness with respect to individual
features. Our benchmark complements these tests. While these tests determine the
capability and correctness of a system, our benchmark evaluates the performance of
the system from different perspectives such as data loading, extensional queries and
scalability.

In [33], they have done some preliminary work towards a benchmark for Semantic
Web reasoners. Though their benchmark is still under construction, they analyze the
publicly available ontologies and report them to be clustered into three categories.
According to the characteristics of each category, our Univ-Bench ontology happens
to be a synthetic "description logic-style” ontology, which has a moderate number of
classes but several restrictions and properties per class. Therefore we argue that our
evaluation represents at least a considerable portion of the real word situations. The
other two categories are terminological ontologies and database schema-like ontolo-
gies. We are currently working on extending our benchmark suite to those two catego-
ries.

5 Conclusions

We presented our work on evaluating knowledge base systems (KBS) with respect to
use in large OWL applications. We have developed the so-called Lehigh University
Benchmark (LUBM) to standardize and facilitate such kind of evaluation. In LUBM:
the Univ-Bench ontology models the university domain in OWL language and offers
necessary features for the evaluation purpose; the data generator creates synthetic
OWL datasets over the ontology. The synthetic data generated are random and repeat-

able, and can scale to an arbitrary size; Fourteen test queries are chosen to represent a
variety of properties, including input size, selectivity, complexity, assumed hierarchy
information, assumed logical inference, amongst others; A set of performance metrics
are provided, which include load time & repository size, query response time, query
completeness and soundness, and a combined metric for evaluating query perform-
ance. LUBM is intended to be used to evaluate Semantic Web KBSs with respect to
extensional queries over a large dataset that commits to a single realistic ontology.

Using LUBM, we successfully conducted an evaluation of four systems, including
two memory–based systems (OWLJessKB and memory-based Sesame) and two sys-
tems with persistent storage (database-based Sesame and DLDB-OWL). We tested
those systems with 5 sets of benchmark data. To our knowledge, no experiment has
been done with the scale of data used here. The smallest data size used consists of 15
OWL files totaling 8MB, while the largest data size consists of 999 files totaling
583MB.

It is clear that a number of factors must be considered when evaluating a KBS.
From our analysis, of the systems tested: DLDB is the best for large datasets where an
equal emphasis is placed on query response time and completeness. Sesame-Memory
is the best when the size is relatively small (e.g., 1 million triples) and only RDFS in-
ference is required; while for a larger dataset (e.g., between 1 and 3 million triples),
Sesame-DB may be a good alternative. OWLJessKB is the best for small datasets
when OWL Lite reasoning is essential, but only after its unsoundness has been cor-
rected.

It should be pointed out that we believe that the performance of any given system
will vary depending on the structure of the ontology and data used to evaluate it. Thus
LUBM does not provide the final say on what KBS to use for an application. How-
ever, we believe that is appropriate for a large class of applications. Furthermore, the
basic methodology can be used to generate ontologies and datasets for other classes of
applications.

Acknowledgements

Some of the material in this paper is based upon work supported by the
Air Force Research Laboratory, Contract Number F30602-00-C-0188 and by
the National Science Foundation (NSF) under Grant No. IIS-0346963. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the United States Air Force or NSF.

References

1. S. Alexaki, G. Karvounarakis, V. Christophides, D. Plexousakis, and K. Tolle. On Storing
Voluminous RDF Description: The case of Web Portal Catalogs. In Proc. of the 4th Interna-
tional Workshop on the Web and Databases, 2001.

2. S. Alexaki, V. Christophides, G. Karvounarakis, D. Plexousakis, and K. Tolle. The
RDFSuite: Managing Voluminous RDF Description Bases. In Proc. of the 2nd International
Workshop on the Semantic Web (SemWeb’ 01), in conjunction with the Tenth International
World Wide Web Conference (WWW10), 2001.

3. D. Bitton, D. DeWitt, and C. Turbyfill. Benchmarking Database Systems, a Systematic Ap-
proach. In Proc. of the 9th International Conference on Very Large Data Bases, 1983

4. D. Bitton. and C. Turbyfill. A Retrospective on the Wisconsin Benchmark. In Readings in
Database Systems, Second Edition, 1994.

5. J. Broekstra and A. Kampman. Inferencing and Truth Maintenance in RDF Schema: explor-
ing a naive practical approach. In Workshop on Practical and Scalable Semantic Systems
(PSSS), 2003.

6. J. Broekstra and A. Kampman. Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Proc. of the 1st International Semantic Web Conference
(ISWC2002), 2002.

7. J.J. Carroll and J.D. Roo ed. OWL Web Ontology Test Cases, W3C Recommendation 10
February 2004, http://www.w3.org/TR/2004/REC-owl-test-20040210/

8. R.G.G. Cattell. An Engineering Database Benchmark. In Readings in Database Systems,
Second Edition, 1994.

9. D. Connolly, F. van Harmelen, I. Horrocks, D.L. McGuinness, P.F. Patel-Schneider, L.A.
Stein. DAML+OIL (March 2001) Reference Description. http://www.w3.org/TR/daml+oil-
reference

10. M. Dean and G. Schreiber ed. OWL Web Ontology Language Reference, W3C
Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-ref-20040210/

11. Q. Elhaik, M-C Rousset, and B. Ycart. Generating Random Benchmarks for Description
Logics. In Proc. of DL’ 98, 1998.

12. M. Gensereth and R. Fikes. Knowledge Interchange Format. Stanford Logic Report Logic-
92-1, Stanford Univ. http://logic.standford.edu/kif/kif.html

13. Y. Guo, J. Heflin, and Z. Pan. Benchmarking DAML+OIL Repositories. In Proc. of the 2nd
International Semantic Web Conference (ISWC2003), 2003.

14. Y. Guo, Z. Pan, and J. Heflin. Choosing the Best Knowledge Base System for Large Se-
mantic Web Applications. In Proc. of the 13th International World Wide Web Conference
(WWW2004) - Alternate Track Papers & Posters, 2004.

15. Y. Guo, Z. Pan, and J. Heflin. An Evaluation of Knowledge Base Systems for Large OWL
Datasets. In Proc. of the 3rd International Semantic Web Conference (ISWC2004), 2004.

16. V. Haarslev and R. Möller. Racer: A Core Inference Engine for the Semantic Web. In
Workshop on Evaluation on Ontology-based Tools, the 2nd International Semantic Web
(ISWC2003), 2003.

17. V. Haarslev, R. Möller, and M. Wessel. Querying the Semantic Web with Racer + nRQL.
In Proc. of the Workshop on Description Logics 2004 (ADL2004).

18. I. Horrocks. The FaCT System. In Automated Reasoning with Analytic Tableaux and Re-
lated Methods International Conference (Tableaux’ 98).

19. I. Horrocks and P. Patel-Schneider. DL Systems Comparison. In Proc. of DL’ 98, 1998.
20. Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/
21. Jess: the Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess
22. KAON: The KArlsruhe ONtology and Semantic Web tool suite.
 http://kaon.semanticweb.org/
23. G. Karvounarakis, S. Alexaki, V. Christophides, D. Plexousakis, and M. Scholl. RQL: A

Declarative Query Language for RDF. In Proc. of the Eleventh International World Wide
Web Conference (WWW'02), 2002.

24. J.B. Kopena and W.C. Regli. DAMLJessKB: A Tool for Reasoning with the Semantic
Web. In Proc. of the 2nd International Semantic Web Conference (ISWC2003), 2003.

25. D.D. Lewis. A sequential algorithm for training text classifiers: Corrigendum and additional
data. SIGIR Forum, 29(2), 13-19, 1995.

26. A. Magkanaraki, S. Alexaki, V. Christophides, and D. Plexousakis. Benchmarking RDF
schemas for the Semantic Web. In Proc. of the 1st International Semantic Web Conference
(ISWC2002), 2002.

27. Z. Pan and J. Heflin. DLDB: Extending Relational Databases to Support Semantic Web
Queries. In Workshop on Practical and Scalable Semantic Systems, the 2nd International
Semantic Web Conference (ISWC2003), 2003.

28. C. J. van Rijsbergen. Information Retireval. Butterworths, London, 1979.
29. A. Seaborne. RDQL - A Query Language for RDF, W3C Member Submission 9 January

2004. http://www.w3.org/Submission/2004/SUBM-RDQL-20040109/
30. M. Sintek and S. Decker. TRIPLE – A Query, Inference, and Transformation Language for

the Semantic Web. In Proc. of the 2nd International Semantic Web Conference
(ISWC2002), 2002.

31. M.K. Smith, C. Welty, and D.L. McGuinness ed. OWL Web Ontology Language Guide,
W3C Recommendation 10 February 2004. http://www.w3.org/TR/2004/REC-owl-guide-
20040210/

32. M. Stonebraker, J. Frew, K. Gardels, and J. Meredith. The SEQUIOA 2000 Storage
Benchmark. In Readings in Database Systems, Second Edition, 1994.

33. C. Tempich and R. Volz. Towards a benchmark for Semantic Web reasoners–an analysis of
the DAML ontology library. In Workshop on Evaluation on Ontology-based Tools, the 2nd
International Semantic Web Conference (ISWC2003), 2003.

34. W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/

Appendix 1: Test Queries

We herein describe each query in the aforementioned KIF-like language. Following
that we describe the characteristics of the query.

Query1
(type GraduateStudent ?X)
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query bears large input and high selectivity. It queries about just one class and
one property and does not assume any hierarchy information or inference.

Query2

(type GraduateStudent ?X)
(type University ?Y)
(type Department ?Z)
(memberOf ?X ?Z)
(subOrganizationOf ?Z ?Y)
(undergraduateDegreeFrom ?X ?Y)

This query increases in complexity: 3 classes and 3 properties are involved. Addition-
ally, there is a triangular pattern of relationships between the objects involved.

Query3

(type Publication ?X)

(publicationAuthor
?X http://www.Department0.University0.edu/AssistantProfessor0)

This query is similar to Query 1 but class Publication has a wide hierarchy.

Query4
(type Professor ?X)
(worksFor ?X http://www.Department0.University0.edu)
(name ?X ?Y1)
(emailAddress ?X ?Y2)
(telephone ?X ?Y3)

This query has small input and high selectivity. It assumes subClassOf relationship be-
tween Professor and its subclasses. Class Professor has a wide hierarchy. Another fea-
ture is that it queries about multiple properties of a single class.

Query5
(type Person ?X)
(memberOf ?X http://www.Department0.University0.edu)

This query assumes subClassOf relationship between Person and its subclasses and
subPropertyOf relationship between memberOf and its subproperties. Moreover, class
Person features a deep and wide hierarchy.

Query6

(type Student ?X)

This query queries about only one class. But it assumes both the explicit subClassOf
relationship between UndergraduateStudent and Student and the implicit one between
GraduateStudent and Student. In addition, it has large input and low selectivity.

Query7

(type Student ?X)
(type Course ?Y)
(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y)
(takesCourse ?X ?Y)

This query is similar to Query 6 in terms of class Student but it increases in the num-
ber of classes and properties and its selectivity is high.

Query8

(type Student ?X)
(type Department ?Y)
(memberOf ?X ?Y)
(subOrganizationOf ?Y http://www.University0.edu)
(emailAddress ?X ?Z)

This query is further more complex than Query 7 by including one more property.

Query9
(type Student ?X)

(type Faculty ?Y)
(type Course ?Z)
(advisor ?X ?Y)
(takesCourse ?X ?Z)
(teacherOf ?Y ?Z)

Besides the aforementioned features of class Student and the wide hierarchy of class
Faculty, like Query 2, this query is characterized by the most classes and properties in
the query set and there is a triangular pattern of relationships.

Query10

(type Student ?X)
(takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) sub-
ClassOf relationship between GraduateStudent and Student, i.e., subClassOf relation-
ship between UndergraduateStudent and Student does not add to the results.

Query11
(type ResearchGroup ?X)
(subOrganizationOf ?X http://www.University0.edu)

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning ca-
pabilities in the system. In this query, property subOrganizationOf is defined as transi-
tive. Since in the benchmark data, instances of ResearchGroup are stated as a sub-
organization of a Department individual and the later suborganization of a University
individual, inference about the subOrgnizationOf relationship between instances of
ResearchGroup and University is required to answer this query. Additionally, its input
is small.

Query12

(type Chair ?X) (type Department ?Y)
(worksFor ?X ?Y)
(subOrganizationOf ?Y http://www.University0.edu)

The benchmark data do not produce any instances of class Chair. Instead, each De-
partment individual is linked to the chair professor of that department by property
headOf. Hence this query requires realization, i.e., inference that that professor is an
instance of class Chair because he or she is the head of a department. Input of this
query is small as well.

Query13

(type Person ?X)
(hasAlumnus http://www.University0.edu ?X)

Property hasAlumnus is defined in the benchmark ontology as the inverse of property
degreeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDe-
greeFrom, and doctoralDegreeFrom. The benchmark data state a person as an alumnus
of a university using one of these three subproperties instead of hasAlumnus. There-
fore, this query assumes subPropertyOf relationships between degreeFrom and its
subproperties, and also requires inference about inverseOf.

Query14

(type UndergraduateStudent ?X)
This query is the simplest in the test set. This query represents those with large input
and low selectivity and does not assume any hierarchy information or inference.

Appendix 2: Query Test Results

Table 3. Query test results 10
LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0) LUBM

(50,0)

Q
ue

ry

 Repository
 & Data

 Set

 Metrics D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

O
W

L

Je
ss

K
B

-P

O
W

L

Je
ss

K
B

-N
P

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

D
L

D
B

-
O

W
L

Time(ms) 59 46 15 9203 200 226 43 37 412 40 106 887 96 2211

Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 181 51878 87 116297 3978 2320 368423 495 14556 711678 1068 392392 1474664 failed

Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 -

Time(ms) 218 40 0 13990 164 2545 53 1 5540 59 0 11956 56 36160

Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3

Completeness 10
0 100 10

0 100 100 100 100 100 100 100 100 100 100

Time(ms) 506 768 6 211514 8929 2498 823 4 5615 762 4 14856 881 10115

Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 617 2945 17 5929 475 4642 3039 17 11511 3214 17 27756 3150 135055

Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 481 253 48 1271 112 4365 1517 251 11158 3539 543 28448 12717 151904

Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

Time(ms) 478 603 3 128115 67 2639 606 4 7028 634 4 18073 657 121673

Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100

Time(ms) 765 105026 273 164106 4953 3004 108384 262 5937 108851 264 13582 103779 39845

Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

10 The numbers marked with * do not count any incorrect answers returned by the system (refer

to Section 3.3.3)

Table 4 continued
LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0) LUBM

(50,0)

Q
ue

ry

 Repository
 & Data

 Set

 Metrics
D

L
D

B
-O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

O
W

L

Je
ss

K
B

-P

O
W

L

Je
ss

K
B

-N
P

D
L

D
B

-O
W

L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-O
W

L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-O
W

L

Se
sa

m
e-

D
B

D
L

D
B

-O
W

L

Time(ms) 634 34034 89 87475 2525 7751 256770 534 19971 460267 1123 57046 1013951 32357
9

Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639
9

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100

Time(ms) 98 20 1 141 4 1051 36 0 2339 40 0 5539 50 15831

Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100

Time(ms) 48 65 1 1592 45 51 73 1 61 84 3 78 82 143

Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 62 4484 12 11266 162 78 4659 14 123 4703 12 310 4886 745

Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 200 4 1 90 1 2389 9 1 5173 12 1 11906 21 34854

Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 187 218 42 811 20 2937 1398 257 7870 383111 515 19424 11175 10676
4

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 39373
0

14

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Appendix 3: Initial Test Results of Jena

The tables below show the initial test results of Jena (v2.1). We have tested Jena both
based on the main memory (Jena-Memory) and using a MySQL database backend
(Jena-DB). The benchmark queries were expressed in RDQL. We have tested Jena
only with the smallest dataset. Unsurprisingly, when its RDFS reasoning was turned
on, Jena’ s performance was exactly the same as Sesame’ s in terms of query complete-
ness and soundness. However, Jena was much slower in answering most of the queries
than Sesame. For some of the queries, Jena did not terminate even after being allowed
to run for several hours. In this experiment we have used a timeout of 2 hours.

When Jena was used with its OWL inferencing, it could answer even smaller num-
ber of queries within the time limit. We speculate that the poor performance of Jena is

11 This is an adjusted value from the original experiment [15], in which the query time was

much longer. This was due to it happened that the OS was performing virtual memory in-
creasing at the time of the query. We have updated the result without the affect of that opera-
tion.

due to that its rule-based reasoners are less optimized especially for a semantically
complex ontology like Univ-Bench.

In order to investigate its query completeness and soundness with respect to the test
queries, we have tested Jena with OWL reasoning on a single department file. This
has allowed Jena to answer more queries within a reasonable time and noticeably,
Jena could answer all those queries (including Queries 11-13) completely and cor-
rectly.

Table 4. Load time of Jena

 Dataset Load Time (hh:mm:ss)
Jena-Memory

(RDFS reasoning) 00:00:12

Jena-DB
(RDFS reasoning) 00:30:45

Jena-Memory
(OWL reasoning) 00:00:13

Jena-DB
(OWL reasoning)

LUBM
(1, 0)

00:32:27

Table 5. Query response time of Jena.

 Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Jena-
Memory
(RDFS)

160 timeout 215 51 585 215 272951 timeout timeout 209 14 4 203 220

Jena-DB
(RDFS)

5715 timeout 13110 2860 24356 479 timeout timeout timeout 11562 536 1048 11731 2095

Jena-
Memory
(OWL)

time-
out timeout 3929 timeout timeout timeout timeout timeout timeout timeout timeout timeout timeout 251

Jena-DB
(OWL)

time-
out

timeout 52818 timeout timeout timeout timeout timeout timeout timeout timeout timeout timeout 2289

Table 6. Query completeness and soundness of Jena.

 Query 1 2 3 4 5 6 7 8 9 10 11 12 13 14

Completeness 100 100 100 100 76 88 0 0 0 0 100 Jena
(RDFS, one
university) Soundness 100

n/a

100 100 100 100 100

n/a n/a

100 100 100 100 100

Completeness 100 100 100 100 100 78 88 78 38 0 0 0 0 100 Jena
(RDFS, one
department) Soundness 100 100 100 100 100 100 100 100 100 100 100 100 100 100

Completeness 100 100 100 100 100 100 100 100 100 Jena
(OWL, one
department) Soundness 100

n/a

100 100 100 100

n/a n/a n/a n/a

100 100 100 100

n/a: not applicable due to timeout

