
An Evaluation of Knowledge Base Systems for Large
OWL Datasets

Yuanbo Guo, Zhengxiang Pan, and Jeff Heflin

Computer Science and Engineering Department, Lehigh University, Bethlehem, PA18015,
USA

{yug2, zhp2, Heflin}@cse.lehigh.edu

Abstract. In this paper, we present an evaluation of four knowledge base sys-
tems (KBS) with respect to use in large OWL applications. To our knowledge,
no experiment has been done with the scale of data used here. The smallest
dataset used consists of 15 OWL files totaling 8MB, while the largest dataset
consists of 999 files totaling 583MB. We evaluated two memory-based systems
(OWLJessKB and memory-based Sesame) and two systems with persistent stor-
age (database-based Sesame and DLDB-OWL). We describe how we have per-
formed the evaluation and what factors we have considered in it. We show the
results of the experiment and discuss the performance of each system. In par-
ticular, we have concluded that existing systems need to place a greater empha-
sis on scalability.

1 Introduction

Various knowledge base systems (KBS) have been developed for processing Semantic
Web information. They vary in a number of important ways. Many KBSs are main
memory-based while others use secondary storage to provide persistence. Another key
difference is the degree of reasoning provided by the KBS. Many systems are incom-
plete with respect to OWL [2], but still useful because they scale better or respond to
queries quickly.

In this paper, we consider the issue of how to choose an appropriate KBS for a
large OWL application. Here, we consider a large application to be one that requires
the processing of megabytes of data. Generally, there are two basic requirements for
such systems. First, the enormous amount of data means that scalability and efficiency
become crucial issues. Second, the system must provide sufficient reasoning capabili-
ties to support the semantic requirements of the application. However, increased rea-
soning capability usually means an increase in query response time as well. An impor-
tant question is how well existing systems support these conflicting requirements.
Furthermore, different applications may place emphasis on different requirements.

It is difficult to evaluate KBSs with respect to these requirements, particularly in
terms of scalability. The main reason for this is that there are few Semantic Web data
sets that are of large size and commit to semantically rich ontologies. The Lehigh
University Benchmark [12] is our first step in order to fill this gap. In this work, we

have made a further step: by making use of the benchmark, we have evaluated four
KBSs for the Semantic Web from several different aspects. We have evaluated two
memory-based systems (OWLJessKB and memory-based Sesame) and two systems
with persistent storage (database-based Sesame and DLDB-OWL). We present our
experiment, discuss the performance of each system, and show some interesting ob-
servations. Based on that, we highlight some issues with respect to the development
and improvement of the same kind of systems, and suggest some potential ways in us-
ing and developing those systems. We also discuss some issues related to the evalua-
tion of Semantic Web KBSs.

The outline of the paper is as follows: Section 2 briefly introduces the aforemen-
tioned Lehigh University Benchmark. Section 3 describes the target systems. Section
4 discusses the results. Section 5 talks about some related work. Section 6 concludes.

2 Lehigh University Benchmark for OWL

The Lehigh University Benchmark [12] was originally developed to evaluate the per-
formance of Semantic Web repositories with respect to extensional queries over a
large DAML+OIL [9] data set that commits to a single realistic ontology. For this pa-
per, we extended the benchmark to provide support for OWL ontologies and datasets.
The benchmark suite for OWL consists of the following:
� A plausible OWL ontology named univ-bench1 for the university domain.
� Repeatable synthetic OWL data sets that can be scaled to an arbitrary size. Both the

univ-bench ontology and the data are in the OWL Lite sublanguage.
� Fourteen test queries that cover a range of types in terms of properties including

input size, selectivity, complexity, assumed hierarchy information, and assumed in-
ference, etc. (Refer to the appendix for a list of them).

� A set of performance metrics including data loading time, repository size, query re-
sponse time, and query answer completeness and soundness. With the exception of
completeness, they are all standard database benchmarking metrics [3, 4, 8, 25].
Completeness is described in Section 3.2.

� The test module.
In addition to the language change, the major differences from the original bench-

mark include: one more query (Query 14); more individuals in the data sets to be clas-
sified; more RDFS vocabulary used in the ontology (e.g., rdfs:domain); and some
domain constraint changes to allow emphasis on description logic subsumption.

Using this benchmark, we have conducted an experiment on the aforementioned
systems. We describe it in next section. The benchmark suite is accessible at
http://www.lehigh.edu/~yug2/Research/SemanticWeb/LUBM/LUBM.htm.

3 The Experiment

3.1 Target Systems

1 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl

In this experiment, we wanted to evaluate the scalability and support for OWL Lite in
various systems. We believe a practical KBS must be able to read OWL files, support
incremental data loading, and provide programming APIs for loading data and issuing
queries. As a result, we have settled on four different knowledge base systems, includ-
ing two implementations of Sesame, OWLJessKB, and DLDB-OWL. We briefly de-
scribe each system below.

Sesame [6] is a repository and querying facility based on RDF and RDF Schema
[27]. It features a generic architecture that separates the actual storage of RDF, func-
tional modules offering operation on this RDF, and communication with these func-
tional modules from outside the system. Sesame supports RDF/RDF Schema infer-
ence, but is an incomplete reasoner for OWL Lite. It can evaluate queries in SeRQL,
RQL and RDQL. We evaluate two implementations of Sesame, main memory-based
and database-based.

OWLJessKB [22] is a memory-based reasoning tool for description logic lan-
guages, particularly OWL. It uses the Java Expert System Shell (Jess) [19], a produc-
tion system, as its underlying reasoner. Current functionality of OWLJessKB is close
to OWL Lite plus some. We evaluate it as a system that supports most OWL entail-
ments.

The fourth system, DLDB-OWL [23], is a repository for processing, storing, and
querying large amounts of OWL data. Its major feature is the extension of a relational
database system with description logic inference capabilities. Specifically, DLDB-
OWL uses Microsoft Access® as the DBMS and FaCT [16] as the OWL reasoner. It
uses the reasoner to precompute subsumption and employs relational views to answer
extensional queries based on the implicit hierarchy that is inferred.

Originally, we had targeted four other systems. The first is Jena [18], a Java
framework for building Semantic Web applications. Jena currently supports both
RDF/RDFS and OWL. We have done some preliminary tests on Jena (v2.1) (both
memory-based and database-based) with our smallest data set. Compared to Sesame,
the most similar system to Jena here, Jena with RDFS reasoning was much slower in
answering nearly all the queries. Some of the queries did not terminate even after be-
ing allowed to run for several hours. The situation was similar when Jena’s OWL rea-
soning was turned on. For this reason, and also due to space constraints, we have de-
cided not to include Jena in this paper. Those who are interested in more details are
referred to [13] instead. The second is KAON [20], an ontology management infra-
structure. KAON provides an API for manipulating RDF models, however, it does not
directly support OWL or RDFS in its framework. We had also considered TRIPLE
[24] and Racer. TRIPLE is an RDF query, inference, and transformation language and
architecture. Instead of having a built-in semantics for RDF Schema, TRIPLE allows
the semantics of languages on top of RDF to be defined with rules. For languages
where this is not easily possible, TRIPLE also provides access to external programs
like description logic classifiers. We were unable to test TRIPLE because it does not
support incremental file loading and it does not provide a programming API either.
Racer [15] is a description logic inference engine currently supporting RDF,
DAML+OIL and OWL. Running as a server, Racer provides inference services via
HTTP or TCP protocol to client applications. Racer’s query interface predefines some
queries and query patterns, but these are insufficient for the test queries in the bench-

mark. Furthermore, there is no API in Racer for importing customized queries. Thus
we were unable to test Racer either.

3.2 Experiment Methodology

System Setup
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and OWL-

JessKB (04-02-23 release). As noted, we test both the main memory-based and data-
base-based implementations of Sesame. For brevity, we hereafter refer to them as Ses-
ame-Memory and Sesame-DB respectively. For both of them, we use the
implementation with RDFS inference capabilities. For the later, we use MySQL
(v4.0.16) as the underlying DBMS since it is reported that Sesame performs best with
it. The DBMS used in DLDB-OWL is MS Access® 2002. We have created a wrapper
over each target system as an interface to the benchmark’ s test module.

Data Sets and Loading

To identify the data set, we use LUBM(N, S) in the subsequent description to de-
note the data set that contains N universities beginning at University0 and is generated
by the benchmark tool using a seed value of S. (Readers are referred to [12] for details
about synthetic data generation in the benchmark.)

We have created 5 sets of test data: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0),
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50
universities respectively, the largest one having over 6,800,000 triples in total. To our
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000
statements. We have easily exceeded that by virtue of the benchmark supporting tool.

In the test data, every university contains 15 to 25 departments, each described by a
separate OWL file. These files are loaded to the target system in an incremental fash-
ion. We measure the elapsed time for loading each data set, and also the consequent
database sizes for Sesame-DB and DLDB-OWL. We do not measure the occupied
memory sizes for Sesame-Memory and OWLJessKB because it is difficult to accu-
rately calculate them. However, since we evaluate all systems on a platform with a
fixed memory size, the largest data set that can be handled by a system measures its
memory efficiency.

Query test

For query testing, the 14 benchmark queries are expressed in RQL [21], Jess, and a
KIF[11]-like language (see the appendix) and issued to Sesame, OWLJessKB, and
DLDB-OWL respectively. We do not use a common language in the test to eliminate
affect of query translation to the query response time.

Query response time is collected in the way defined by the benchmark, which is
based on the process used in database benchmarks [3, 4, 8, 25]. To account for cach-
ing, each of the fourtheen queries is executed for ten times consecutively and the aver-
age time is computed.

We also examine query answer completeness of each system. In logic, an inference
procedure is complete if it can find a proof for any sentence that is entailed by the

knowledge base. With respect to queries, we say a system is complete if it generates
all answers that are entailed by the knowledge base, where each answer is a binding of
the query variables that results in an entailed sentence. However, on the Semantic
Web, partial answers will often be acceptable. So it is important not to measure com-
pleteness with such a coarse distinction. Instead, we measure the degree of complete-
ness of each query answer as the percentage of the entailed answers that are returned
by the system. Note that we request that the result set contains unique answers.

In addition, as we will show in next section, we have realized in this evaluation that
query soundness is also worthy of examination. With similar argument to the above,
we in this evaluation measure the degree of soundness of each query answer as the
percentage of the answers returned by the system that are actually entailed.

Test environment

We have done the test on a desktop computer. The environment is as follows:
� 1.80GHz Pentium 4 CPU; 256MB of RAM; 80GB of hard disk
� Windows XP Professional OS; Java SDK 1.4.1; 512MB of max heap size

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly.
With the standard setting for max heap size in Java, the system failed to load the one-
university data set due to out of memory errors. As a workaround, we increased the
maximum heap size to 1GB, which requests large amount of virtual memory from op-
erating system. This change allowed OWLJessKB to properly load the dataset.

4 Results and Discussions

4.1 Data Loading

Table 1 shows the data loading time for all systems and the on-disk repository sizes of
DLDB-OWL and Sesame-DB. Fig. 1 depicts how the data loading time grows as the
data set size increases and compares the repository sizes of the two database-based
systems.

The test results have reinforced scalability as an important issue and challenge for
Semantic Web knowledge base systems. One of the first issues is how large of a data
set each system can handle. As expected, the memory-based systems did not perform
as well as the persistent storage systems in this regard. OWLJessKB, could only load
the 1-university data set, and took over 20 times longer than any other system to do so.
On the other hand, we were surprised to see that Sesame-Memory could load up to 10
universities, and was able to do it in 5% of the time of the next fastest system. How-
ever, for 20 or more universities, Sesame-Memory also succumbed to memory limita-
tions.

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale data sets than what has been reported so far. The result reveals an
apparent problem for Sesame-DB: it does not scale in data loading, as can be seen
from Fig. 2. As an example, it took over 300 times longer to load the 20-university
data set than the 1-university data set, although the former set contains only about 25
times more instances than the later. We extrapolate that it will take Sesame-DB over 3

weeks to finish up loading the 50-university data set. Therefore, we have decided not
to do that unrealistic test.

Table 1. Load Time and Repository Sizes

 Data Set Instance Num Load Time (hh:mm:ss) Repository Size (KB)
DLDB-OWL 00:05:43 16,318
Sesame-DB 00:09:02 48,333

Sesame-Memory 00:00:13 -
OWLJessKB

LUBM
(1, 0) 103,074

03:16:12 -
DLDB-OWL 00:51:57 91,292
Sesame-DB 03:00:11 283,967

Sesame-Memory 00:01:53 -
OWLJessKB

LUBM
(5, 0) 645,649

- -
DLDB-OWL 01:54:41 184,680
Sesame-DB 12:27:50 574,554

Sesame-Memory 00:05:40 -
OWLJessKB

LUBM
(10, 0) 1,316,322

- -
DLDB-OWL 04:22:53 388,202
Sesame-DB 46:35:53 1,209,827

Sesame-Memory - -
OWLJessKB

LUBM
(20, 0) 2,781,322

- -
DLDB-OWL 12:37:57 958,956
Sesame-DB - -

Sesame-Memory - -
OWLJessKB

LUBM
(50, 0) 6,888,642

- -

Fig. 1. Load Time and Repository Sizes. The left hand figure shows the load time. The right
hand figure shows the repository sizes of the database-based systems.

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the
different performance of the two systems is caused by the following two reasons. First,
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained
in a table. When a resource is encountered during the data loading, they will look up
that table to determine if it has not been seen before and need to be assigned a new ID.
As mentioned in [23], querying the ID table every time is very likely to slow down the
data loading as the data size grows. In its implementation, Sesame also assigns every
literal an ID, while DLDB-OWL stores literals directly in the destination tables, which

0

20

40

60

80

100

120

140

160

180

0 100 200 300 400 500 600 700 800

Instances # (10K)

L
o

ad
 T

im
e

(1
00

0S
)

DLDB Sesame-DB
Sesame-Memory OWLJessKB

0

200

400

600

800

1,000

1,200

1,400

0 100 200 300 400 500 600 700 800

Ins tances # (10K)

R
ep

os
ito

ry
 S

iz
e

(M
B

)

DLDB Sesame-DB

means Sesame has to spend even more time on ID lookup. Moreover, in order to im-
prove performance, DLDB-OWL caches resource-ID pairs during current loading.

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support
statement deletions it uses a truth maintenance system to track all deductive depend-
encies between statements. As [5] shows, this appears to affect the performance sig-
nificantly if there are many inferred statements or the data set is fairly large. We
should note that this scalability problem was not as noticeable in our previous study
involving a DAML+OIL benchmark [14]. We believe this is because the prior ex-
periment used daml:domain (as opposed to rdfs:domain) in its ontology, which does
not trigger inferences in Sesame.

4.2 Query Response Time

Table 2 is a complete list of the query test results, including the query response time,
number of answers, and their completeness. Note that what are displayed in each an-
swer row are only the numbers of correct answers (Refer to Section 4.3). Fig. 2 com-
pares by graphs the query response time of the systems except OWLJessKB.

In terms of query, the results also lead to some scalability and efficiency concerns.
Although compared to the performance of its predecessor DAMLJessKB [22] in [14],
OWLJessKB improves its query time greatly at the sacrifice of much longer loading
time, it is still the slowest in answering thirteen of the queries. Sesame-DB was also
very slow in answering some queries (even for one university), including Queries 2, 8,
and 9. As for DLDB-OWL, it is the only system that has been tested with the largest
data set. One concern is that when it comes to the larger data sets especially the 50-
university set, DLDB-OWL’ s query time no longer grows linearly for some queries,
i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer Query 2 on the 50-
univeristy data set after MS Access ran out of temporary space. Compared to other
systems, Sesame-Memory, is the fastest in answering all of the queries. It is also the
fastest in data loading. This suggests that it might be the best choice for data of small
scale if persistent storage and OWL inference is not required.

We have observed that those queries for which Sesame-DB’ s performance goes
down dramatically are common in that they do not contain a specific URI as a subject
or object in the statements. On the other hand, Sesame-DB shows a nice property in
answering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional
increase in the response time as the data size grows. We have also noticed a common
feature of these queries, i.e., they have constant number of results over the test data
sets. Whether these are the causes or coincidences is a subject for future work.

It is beyond the scope of this paper to analyze in depth the query evaluation and op-
timization mechanism in each system. Instead, we propose some topics for future in-
vestigation. One is to explore the potential relationship between query types and the
performance of a certain system and its characteristics. Of course how to categorize
queries is yet another issue. As another, Sesame-DB implements the main bulk of the
evaluation in its RQL query engine while its query engine for another query language
SeRQL pushes a lot of the work down to the underlying DBMS. As for DLDB-OWL,

Table 2. Query Test Results. (* correct answers only, refer to Table 3)
LUBM(1,0) LUBM(5,0) LUBM(10,0) LUBM(20,0) LUBM

(50,0)

Q
ue

ry

 Repository
 & Data

 Set

 Metrics D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

O
W

L

Je
ss

K
B

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

Se
sa

m
e-

M
em

or
y

D
L

D
B

-
O

W
L

Se
sa

m
e-

D
B

D
L

D
B

-
O

W
L

Time(ms) 59 46 15 9203 226 43 37 412 40 106 887 96 2211

Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 181 51878 87 116297 2320 368423 495 14556 711678 1068 392392 1474664 failed

Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 -

Time(ms) 218 40 0 13990 2545 53 1 5540 59 0 11956 56 36160

Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 506 768 6 211514 2498 823 4 5615 762 4 14856 881 10115

Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 617 2945 17 5929 4642 3039 17 11511 3214 17 27756 3150 135055

Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Time(ms) 481 253 48 1271 4365 1517 251 11158 3539 543 28448 12717 151904

Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

Time(ms) 478 603 3 128115 2639 606 4 7028 634 4 18073 657 121673

Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100

Time(ms) 765 105026 273 164106 3004 108384 262 5937 108851 264 13582 103779 39845

Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100

Time(ms) 634 34034 89 87475 7751 256770 534 19971 460267 1123 57046 1013951 323579

Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639 9

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100

Time(ms) 98 20 1 141 1051 36 0 2339 40 0 5539 50 15831

Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100

Time(ms) 48 65 1 1592 51 73 1 61 84 3 78 82 143

Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 62 4484 12 11266 78 4659 14 123 4703 12 310 4886 745

Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 200 4 1 90 2389 9 1 5173 12 1 11906 21 34854

Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0

Time(ms) 187 218 42 811 2937 1398 257 7870 14021 515 19424 11175 106764

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 393730 14

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100

Fig. 2. Query time of DLDB-OWL, Sesame-DB, and Sesame-Memory (up to 20 universities)

Query 1

0

100
200

300

400
500

600
700

800
900

1,000

0 50 100 150 200 250 300
Instances # (10K)

Q
u

er
y

Ti
m

e
(m

s)

DLDB Sesame-DB Sesame-Memory

Query 2

0

200

400

600

800

1,000

1,200

1,400

1,600

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 3

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 5

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 4

0

2

4

6

8

10

12

14

16
0 50 100 150 200 250 300

Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 6

0

5

10

15

20

25

30

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 7

0

2

4

6

8

10

12

14

16

18

20

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 8

0

20

40

60

80

100

120

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 9

0

200

400

600

800

1,000

1,200

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 11

0

10

20

30

40
50

60

70

80

90

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(m
s)

DLDB Sesame-DB Sesame-Memory

Query 10

0

1

2

3

4

5

6

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 12

0

1

2

3

4

5

6
0 50 100 150 200 250 300

Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 13

0

2

4

6

8

10

12

14

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

Query 14

0

5

10

15

20

25

0 50 100 150 200 250 300
Instances # (10K)

Q
ue

ry
 T

im
e

(S
)

DLDB Sesame-DB Sesame-Memory

it directly translates as much of the query for the database. Further work should be
done to investigate how these design differences as well as the underlying DBMS used
impact performance.

4.3 Query Completeness and Soundness

As described in [12], we have chosen the benchmark test queries according to several
criteria. In fact, another effort we have made in defining these queries is to make them
as realistic as possible. In other words, we want these queries to represent, to some ex-
tent, those in the real world. We are very interested in seeing what queries can be an-
swered by each system.

As mentioned before, Sesame is able to address RDF/RDFS semantics while
DLDB-OWL and OWLJessKB integrate extra OWL inference capability. As the re-
sults turned out, all systems could answer Queries 1 through 5 and Query 14 com-
pletely. As we expected, DLDB-OWL was able to find all the answers for Queries 6 to
10, which requires subsumption inference in order to get complete results, while Ses-
ame could only find partial or no answers for them. It is interesting to notice that
DLDB-OWL and Sesame found complete answers for Query 5 in different ways:
DLDB-OWL made use of subsumption, while Sesame, although not able to figure out
the subsumption, used an rdfs:domain restriction to determine the types of the indi-
viduals in the data set and thus achieved the same result. OWLJessKB could find all
the answers for every query, and was the only system to answer Queries 11 and 13
completely, which assume owl:TransitiveProperty and owl:inverseOf inference re-
spectively. Nevertheless, we have discovered that OWLJessKB made unsound infer-
ences with respect to some queries. Specifically, it returned incorrect answers to Que-
ries 4, 6, 8, and 12 because it incorrectly inferred that Lecturer is a Professor,
Employee a Student, and Student a Chair. We list in Table 3 the completeness and
soundness of OWLJessKB for each query.

Table 3. Query Soundness of OWLJessKB.

 1 2 3 4 5 6 7 8 9 10 11 12 13 14
Total/

Correct answers 4/4 0/0 6/6 41/34 719/719 8330/
7790 67/67 8330/

7790 208/208 4/4 224/224 540/15 1/1 5916/5916

Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100

4.4 A Combined Metric

As the previous section shows, the target systems in this evaluation differ a lot in their
inference capability. We feel it is insufficient to evaluate the query response time and
answer completeness and soundness in isolation. We need a metric to measure them in
combination so as to better appreciate the overall performance of a system and the po-
tential tradeoff between the query response time and inference capability. At the same
time, we have realized that this is a challenging issue. We introduce here our initial at-
tempt to address this issue.

First, we use the F-Measure metric to compute the tradeoff between query com-
pleteness and soundness, since essentially they are analogous to recall and precision in
Information Retrieval. In the formula below, Cq and Sq (�[0, 1]) are the answer com-
pleteness and soundness for query q. b determines the weighting of Cq and Sq. We set
it to 1 here, which means we equally weight completeness and soundness.

qq

qq
q

SCb
SCb

F �
*

**2
2

Then, we define a composite metric CM of query response time and answer com-
pleteness and soundness as the following, which is also inspired by F-Measure:

¦ � � M

q
qq

qq

FP

FP

M
CM

1 2 *

**21
D

D

In the above, M is the total number of test queries; Pq � [0, 1] is defined as

Pq = max (1 –
N

Tq
, ��

Tq is the response time (ms) for query q and N is the total number of instances in
the data set concerned. We have used a timeout value to eliminate undue affect of
those query response time that is extremely far away from others in the test results: if
to a certain query q, a system’ s response time per instance is greater than 1- , where
is a very small positive value, ZH�ZLOO�XVH� �IRU�3q instead. :H�XVH� �RI��������LQ�WKLV�
evaluation. �has the same role as b in Fq and is also set to 1.

Generally speaking, the CM metric will reward those systems that can answer que-
ries faster, more completely and more soundly. We calculate the metric value of each
target system with respect to each data set. Fig. 3 shows the results. We find that these
numerical results are very helpful for us to appreciate the overall performance of each
system. DLDB-OWL achieves higher scores across all the data sets than the others.
This helps us believe that its extra inference capability is not counterproductive. On
the contrary, OWLJessKB receives the lowest value, emphasizing the need of per-
formance improvement in it. And the higher CM values Sesame-Memory gets than
Sesame-DB again suggest that it is a reasonable choice for small scale application if
persistent storage is not required, particularly if completeness is not significant.

Fig. 3. CM values with weights b=1 and �

0.78 0.78 0.78 0.78
0.71

0.59
0.64 0.65 0.65

0.69 0.69 0.69

0.58

LUMB(1, 0) LUMB(5, 0) LUMB(10, 0) LUMB(20, 0) LUMB(50, 0)

DLDB

Sesame-DB

Sesame-Memory

OWLJessKB

5 Related Work

To the best of our knowledge, the Lehigh University Benchmark we used in the
evaluation is the first one for Semantic Web systems. [1] has developed some bench-
mark queries for RDF, however, these are mostly intensional queries, while we are
concerned with extensional queries for OWL. Some attempts have been done to
benchmark description logic systems [10, 17]. The emphasis of this work is to evalu-
ate the reasoning algorithms in terms of the tradeoff between expressiveness and trac-
tability in description logic. Our benchmark is not a description logic benchmark. We
are more concerned about the issue of storing and querying large amount of data that
are created for realistic Semantic Web systems. Detailed discussion on related work to
the benchmark can be found in [12].

The Web Ontology Working Group provides a set of OWL test cases [7]. They are
intended to provide examples for, and clarification of, the normative definition of
OWL and focus on the completeness and soundness with respect to individual
features. Different from our benchmark suite, they are not suitable for the evaluation
of scalability.

Tempich and Volz [26] have done some preliminary work towards a benchmark for
Semantic Web reasoners. They also point out that the response time as well as the cor-
rectness and completeness should be taken into account when formulating benchmark
metrics. Though their benchmark is still under construction, they analyze the publicly
available ontologies and report them to be clustered into three categories. According
to the characteristics of each category, our univ-bench ontology happens to be a syn-
thetic "description logic-style” ontology, which has a moderate number of classes but
several restrictions and properties per class. Therefore we argue that our evaluation
represents at least a considerable portion of the real word situations. The other two
categories are terminological ontologies and database schema-like ontologies. We
plan to extend our benchmark suite to those two categories in the future.

6 Conclusions

We presented an evaluation of four knowledge base systems (KBS) with respect to use
in large OWL applications, including two memory–based systems (OWLJessKB and
memory-based Sesame) and two systems with persistent storage (database-based Ses-
ame and DLDB-OWL). The experiment was conducted in a systematic and standard
way by using the Lehigh University Benchmark. We tested those systems with 5 sets
of benchmark data and 14 extensional queries. To our knowledge, no experiment has
been done with the scale of data used here. The smallest data size used consists of 15
OWL files totaling 8MB, while the largest data size consists of 999 files totaling
583MB.

It is clear that a number of factors must be considered when evaluating a KBS.
From our analysis, of the systems tested: DLDB is the best for large data sets where an
equal emphasis is placed on query response time and completeness. Sesame-Memory
is the best when the size is relatively small (e.g., 1 million triples) and only RDFS in-

ference is required; while for a larger data set (e.g., between 1 and 3 million triples),
Sesame-DB may be a good alternative. OWLJessKB is the best for small datasets
when OWL Lite reasoning is essential, but only after its unsoundness has been cor-
rected.

It should be pointed out that we believe that the performance of any given system
will vary depending on the structure of the ontology and data used to evaluate it. Thus
the Lehigh University Benchmark does not provide the final say on what KBS to use
for an application. However, we believe that is appropriate for a large class of applica-
tions. Furthermore, the basic methodology can be used to generate ontologies and
datasets for other classes of applications.

Acknowledgements

Some of the material in this paper is based upon work supported by the
Air Force Research Laboratory, Contract Number F30602-00-C-0188 and by
the National Science Foundation (NSF) under Grant No. IIS-0346963. Any
opinions, findings and conclusions or recommendations expressed in this
material are those of the author(s) and do not necessarily reflect the
views of the United States Air Force or NSF.

References

1. Alexaki, S. et al. On Storing Voluminous RDF Description: The case of Web Portal Cata-
logs. In Proc. of the 4th International Workshop on the Web and Databases. 2001.

2. M. Dean and G. Schreiber ed. OWL Web Ontology Language Reference.
 http://www.w3.org/TR/owl-ref/
3. Bitton, D., DeWitt, D., and Turbyfill, C. Benchmarking Database Systems, a Systematic Ap-

proach. In Proc. of the 9th International Conference on Very Large Data Bases. 1983
4. Bitton, D. and Turbyfill, C. A Retrospective on the Wisconsin Benchmark. In Readings in

Database Systems, Second Edition. 1994.
5. Broekstra, J. and Kampman, A. Inferencing and Truth Maintenance in RDF Schema: explor-

ing a naive practical approach. In Workshop on Practical and Scalable Semantic Systems
(PSSS). 2003.

6. Broekstra, J. and Kampman, A. Sesame: A Generic Architecture for Storing and Querying
RDF and RDF Schema. In Proc. of ISWC2002.

7. Carroll, J.J. and Roo, J.D. ed. OWL Web Ontology Test Cases.
 http://www.w3.org/TR/2004/REC-owl-test-20040210/
8. Cattell, R.G.G. An Engineering Database Benchmark. In Readings in Database Systems,

Second Edition. 1994.
9. Connolly, D. et al. DAML+OIL (March 2001) Reference Description.
 http://www.w3.org/TR/daml+oil-reference
10. Elhaik, Q, Rousset, M-C, and Ycart, B. Generating Random Benchmarks for Description

Logics. In Proc. of DL’ 98.
11. Gensereth, M. and Fikes, R. Knowledge Interchange Format. Stanford Logic Report Logic-

92-1, Stanford Univ. http://logic.standford.edu/kif/kif.html

12. Guo, Y., Heflin, J., and Pan, Z. Benchmarking DAML+OIL Repositories. In Proc. of
ISWC2003.

13. Guo, Y., Heflin, J., and Pan, Z. An Evaluation of Knowledge Base Systems for Large OWL
Datasets. Technical report, CSE department, Lehigh University. 2004. To appear.

14. Guo, Y., Pan, Z. and Heflin, J. Choosing the Best Knowledge Base System for Large Se-
mantic Web Applications. Poster paper at WWW2004.

15. Haarslev, V. and Moller, R. Racer: A Core Inference Engine for the Semantic Web. In
Workshop on Evaluation on Ontology-based Tools, ISWC2003.

16. Horrocks, I. The FaCT System. In Automated Reasoning with Analytic Tableaux and Re-
lated Methods International Conference (Tableaux’ 98).

17. Horrocks, I. and Patel-Schneider, P. DL Systems Comparison. In Proc. of DL’ 98.
18. Jena – A Semantic Web Framework for Java. http://jena.sourceforge.net/
19. Jess: the Rule Engine for the Java Platform. http://herzberg.ca.sandia.gov/jess
20. KAON: The KArlsruhe ONtology and Semantic Web tool suite.
 http://kaon.semanticweb.org/
21. Karvounarakis, G. et al. Querying Community Web Portals.
 http://www.ics.forth.gr/proj/isst/RDF/RQL/rql.pdf
22. Kopena, J.B. and Regli, W.C. DAMLJessKB: A Tool for Reasoning with the Semantic

Web. In Proc. of ISWC2003.
23. Pan, Z. and Heflin, J. DLDB: Extending Relational Databases to Support Semantic Web

Queries. In Workshop on Practical and Scalable Semantic Systems, ISWC2003.
24. Sintek, M. and Decker, S. TRIPLE – A Query, Inference, and Transformation Language for

the Semantic Web. In Proc. of ISWC2002.
25. Stonebraker, M. et al. The SEQUIOA 2000 Storage Benchmark. In Readings in Database

Systems, Second Edition. 1994.
26. Tempich, C. and Volz, R. Towards a benchmark for Semantic Web reasoners–an analysis

of the DAML ontology library. In Workshop on Evaluation on Ontology-based Tools,
ISWC2003.

27. W3C. Resource Description Framework (RDF). http://www.w3.org/RDF/

Appendix: Test Queries

We herein describe each query in a KIF like language, in which a query is written as a
conjunction of atoms. Following that we describe the characteristics of the query.

Query1
(type GraduateStudent ?X) (takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query bears large input and high selectivity. It queries about just one class and one
property and does not assume any hierarchy information or inference.

Query2
(type GraduateStudent ?X) (type University ?Y) (type Department ?Z)
(memberOf ?X ?Z) (subOrganizationOf ?Z ?Y) (undergraduateDegreeFrom ?X ?Y)

This query increases in complexity: 3 classes and 3 properties are involved. Additionally,
there is a triangular pattern of relationships between the objects involved.

Query3
(type Publication ?X)
(publicationAuthor ?X http://www.Department0.University0.edu/AssistantProfessor0)

This query is similar to Query 1 but class Publication has a wide hierarchy.
Query4

(type Professor ?X) (worksFor ?X http://www.Department0.University0.edu)
(name ?X ?Y1) (emailAddress ?X ?Y2) (telephone ?X ?Y3)

Query10
(type Student ?X) (takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0)

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) subClas-
sOf relationship between GraduateStudent and Student, i.e., subClassOf relationship between
UndergraduateStudent and Student does not add to the results.

Query12
(type Chair ?X) (type Department ?Y)
(worksFor ?X ?Y) (subOrganizationOf ?Y http://www.University0.edu)

The benchmark data do not produce any instances of class Chair. Instead, each Department
individual is linked to the chair professor of that department by property headOf. Hence this
query requires realization, i.e., inference that that professor is an instance of class Chair be-
cause he or she is the head of a department. Input of this query is small as well.

Query13
(type Person ?X) (hasAlumnus http://www.University0.edu ?X)

Property hasAlumnus is defined in the benchmark ontology as the inverse of property de-
greeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDegreeFrom,
and doctoralDegreeFrom. The benchmark data state a person as an alumnus of a university us-
ing one of these three subproperties instead of hasAlumnus. Therefore, this query assumes
subPropertyOf relationships between degreeFrom and its subproperties, and also requires in-
ference about inverseOf.

Query11
(type ResearchGroup ?X) (subOrganizationOf ?X http://www.University0.edu)

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning capa-
bilities in the system. In this query, property subOrganizationOf is defined as transitive. Since
in the benchmark data, instances of ResearchGroup are stated as a sub-organization of a De-
partment individual and the later suborganization of a University individual, inference about
the subOrgnizationOf relationship between instances of ResearchGroup and University is re-
quired to answer this query. Additionally, its input is small.

Query7
(type Student ?X) (type Course ?Y)
(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y) (takesCourse ?X ?Y)

This query is similar to Query 6 in terms of class Student but it increases in the number of
classes and properties and its selectivity is high.

Query8
(type Student ?X) (type Department ?Y) (memberOf ?X ?Y)
(subOrganizationOf ?Y http://www.University0.edu) (emailAddress ?X ?Z)

This query is further more complex than Query 7 by including one more property.
Query9

(type Student ?X) (type Faculty ?Y) (type Course ?Z)
(advisor ?X ?Y) (takesCourse ?X ?Z) (teacherOf ?Y ?Z)

Besides the aforementioned features of class Student and the wide hierarchy of class Fac-
ulty, like Query 2, this query is characterized by the most classes and properties in the query
set and there is a triangular pattern of relationships.

Query6
(type Student ?X)

This query queries about only one class. But it assumes both the explicit subClassOf rela-
tionship between UndergraduateStudent and Student and the implicit one between Graduat-
eStudent and Student. In addition, it has large input and low selectivity.

Query5
(type Person ?X) (memberOf ?X http://www.Department0.University0.edu)

This query assumes subClassOf relationship between Person and its subclasses and sub-
PropertyOf relationship between memberOf and its subproperties. Moreover, class Person fea-
tures a deep and wide hierarchy.

This query has small input and high selectivity. It assumes subClassOf relationship be-
tween Professor and its subclasses. Class Professor has a wide hierarchy. Another feature is
that it queries about multiple properties of a single class.

Query14
(type UndergraduateStudent ?X)

This query is the simplest in the test set. This query represents those with large input and
low selectivity and does not assume any hierarchy information or inference.

