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Abstract. In this paper, we present an evaluation of four knowledge base sys-
tems (KBS) with respect to use in large OWL applications. To our knowledge, 
no experiment has been done with the scale of data used here. The smallest 
dataset used consists of 15 OWL files totaling 8MB, while the largest dataset 
consists of 999 files totaling 583MB. We evaluated two memory-based systems 
(OWLJessKB and memory-based Sesame) and two systems with persistent stor-
age (database-based Sesame and DLDB-OWL). We describe how we have per-
formed the evaluation and what factors we have considered in it. We show the 
results of the experiment and discuss the performance of each system. In par-
ticular, we have concluded that existing systems need to place a greater empha-
sis on scalability. 

1 Introduction 

Various knowledge base systems (KBS) have been developed for processing Semantic 
Web information. They vary in a number of important ways. Many KBSs are main 
memory-based while others use secondary storage to provide persistence. Another key 
difference is the degree of reasoning provided by the KBS. Many systems are incom-
plete with respect to OWL [2], but still useful because they scale better or respond to 
queries quickly. 

In this paper, we consider the issue of how to choose an appropriate KBS for a 
large OWL application. Here, we consider a large application to be one that requires 
the processing of megabytes of data. Generally, there are two basic requirements for 
such systems. First, the enormous amount of data means that scalability and efficiency 
become crucial issues. Second, the system must provide sufficient reasoning capabili-
ties to support the semantic requirements of the application. However, increased rea-
soning capability usually means an increase in query response time as well. An impor-
tant question is how well existing systems support these conflicting requirements. 
Furthermore, different applications may place emphasis on different requirements.  

It is difficult to evaluate KBSs with respect to these requirements, particularly in 
terms of scalability. The main reason for this is that there are few Semantic Web data 
sets that are of large size and commit to semantically rich ontologies. The Lehigh 
University Benchmark [12] is our first step in order to fill this gap. In this work, we 



have made a further step: by making use of the benchmark, we have evaluated four 
KBSs for the Semantic Web from several different aspects. We have evaluated two 
memory-based systems (OWLJessKB and memory-based Sesame) and two systems 
with persistent storage (database-based Sesame and DLDB-OWL). We present our 
experiment, discuss the performance of each system, and show some interesting ob-
servations. Based on that, we highlight some issues with respect to the development 
and improvement of the same kind of systems, and suggest some potential ways in us-
ing and developing those systems. We also discuss some issues related to the evalua-
tion of Semantic Web KBSs. 

The outline of the paper is as follows: Section 2 briefly introduces the aforemen-
tioned Lehigh University Benchmark. Section 3 describes the target systems. Section 
4 discusses the results. Section 5 talks about some related work. Section 6 concludes. 

2 Lehigh University Benchmark for OWL 

The Lehigh University Benchmark [12] was originally developed to evaluate the per-
formance of Semantic Web repositories with respect to extensional queries over a 
large DAML+OIL [9] data set that commits to a single realistic ontology. For this pa-
per, we extended the benchmark to provide support for OWL ontologies and datasets. 
The benchmark suite for OWL consists of the following: 
� A plausible OWL ontology named univ-bench1 for the university domain. 
� Repeatable synthetic OWL data sets that can be scaled to an arbitrary size. Both the 

univ-bench ontology and the data are in the OWL Lite sublanguage. 
� Fourteen test queries that cover a range of types in terms of  properties including 

input size, selectivity, complexity, assumed hierarchy information, and assumed in-
ference, etc. (Refer to the appendix for a list of them). 

� A set of performance metrics including data loading time, repository size, query re-
sponse time, and query answer completeness and soundness. With the exception of 
completeness, they are all standard database benchmarking metrics [3, 4, 8, 25]. 
Completeness is described in Section 3.2. 

� The test module. 
In addition to the language change, the major differences from the original bench-

mark include: one more query (Query 14); more individuals in the data sets to be clas-
sified; more RDFS vocabulary used in the ontology (e.g., rdfs:domain); and some 
domain constraint changes to allow emphasis on description logic subsumption.  

Using this benchmark, we have conducted an experiment on the aforementioned 
systems. We describe it in next section. The benchmark suite is accessible at 
http://www.lehigh.edu/~yug2/Research/SemanticWeb/LUBM/LUBM.htm. 
 
3 The Experiment 
 
3.1 Target Systems 

                                                           
1 http://www.lehigh.edu/~zhp2/2004/0401/univ-bench.owl 



In this experiment, we wanted to evaluate the scalability and support for OWL Lite in 
various systems. We believe a practical KBS must be able to read OWL files, support 
incremental data loading, and provide programming APIs for loading data and issuing 
queries. As a result, we have settled on four different knowledge base systems, includ-
ing two implementations of Sesame, OWLJessKB, and DLDB-OWL. We briefly de-
scribe each system below. 

Sesame [6] is a repository and querying facility based on RDF and RDF Schema 
[27]. It features a generic architecture that separates the actual storage of RDF, func-
tional modules offering operation on this RDF, and communication with these func-
tional modules from outside the system. Sesame supports RDF/RDF Schema infer-
ence, but is an incomplete reasoner for OWL Lite. It can evaluate queries in SeRQL, 
RQL and RDQL. We evaluate two implementations of Sesame, main memory-based 
and database-based. 

OWLJessKB [22] is a memory-based reasoning tool for description logic lan-
guages, particularly OWL. It uses the Java Expert System Shell (Jess) [19], a produc-
tion system, as its underlying reasoner. Current functionality of OWLJessKB is close 
to OWL Lite plus some. We evaluate it as a system that supports most OWL entail-
ments. 

The fourth system, DLDB-OWL [23], is a repository for processing, storing, and 
querying large amounts of OWL data. Its major feature is the extension of a relational 
database system with description logic inference capabilities. Specifically, DLDB-
OWL uses Microsoft Access® as the DBMS and FaCT [16] as the OWL reasoner. It 
uses the reasoner to precompute subsumption and employs relational views to answer 
extensional queries based on the implicit hierarchy that is inferred. 

Originally, we had targeted four other systems. The first is Jena [18], a Java 
framework for building Semantic Web applications. Jena currently supports both 
RDF/RDFS and OWL. We have done some preliminary tests on Jena (v2.1) (both 
memory-based and database-based) with our smallest data set. Compared to Sesame, 
the most similar system to Jena here, Jena with RDFS reasoning was much slower in 
answering nearly all the queries. Some of the queries did not terminate even after be-
ing allowed to run for several hours. The situation was similar when Jena’s OWL rea-
soning was turned on. For this reason, and also due to space constraints, we have de-
cided not to include Jena in this paper. Those who are interested in more details are 
referred to [13] instead. The second is KAON [20], an ontology management infra-
structure. KAON provides an API for manipulating RDF models, however, it does not 
directly support OWL or RDFS in its framework. We had also considered TRIPLE 
[24] and Racer. TRIPLE is an RDF query, inference, and transformation language and 
architecture. Instead of having a built-in semantics for RDF Schema, TRIPLE allows 
the semantics of languages on top of RDF to be defined with rules. For languages 
where this is not easily possible, TRIPLE also provides access to external programs 
like description logic classifiers. We were unable to test TRIPLE because it does not 
support incremental file loading and it does not provide a programming API either. 
Racer [15] is a description logic inference engine currently supporting RDF, 
DAML+OIL and OWL. Running as a server, Racer provides inference services via 
HTTP or TCP protocol to client applications. Racer’s query interface predefines some 
queries and query patterns, but these are insufficient for the test queries in the bench-



mark. Furthermore, there is no API in Racer for importing customized queries. Thus 
we were unable to test Racer either. 

3.2 Experiment Methodology 

System Setup 
The systems we test are DLDB-OWL (04-03-29 release), Sesame v1.0, and OWL-

JessKB (04-02-23 release). As noted, we test both the main memory-based and data-
base-based implementations of Sesame. For brevity, we hereafter refer to them as Ses-
ame-Memory and Sesame-DB respectively. For both of them, we use the 
implementation with RDFS inference capabilities. For the later, we use MySQL 
(v4.0.16) as the underlying DBMS since it is reported that Sesame performs best with 
it. The DBMS used in DLDB-OWL is MS Access® 2002. We have created a wrapper 
over each target system as an interface to the benchmark’ s test module. 
 
Data Sets and Loading 

To identify the data set, we use LUBM(N, S) in the subsequent description to de-
note the data set that contains N universities beginning at University0 and is generated 
by the benchmark tool using a seed value of S. (Readers are referred to [12] for details 
about synthetic data generation in the benchmark.) 

We have created 5 sets of test data: LUBM(1, 0), LUBM(5, 0), LUBM(10, 0), 
LUBM(20, 0), and LUBM(50, 0), which contain OWL files for 1, 5, 10, 20, and 50 
universities respectively, the largest one having over 6,800,000 triples in total. To our 
knowledge, prior to this experiment, Sesame has been tested with at most 3,000,000 
statements. We have easily exceeded that by virtue of the benchmark supporting tool. 

In the test data, every university contains 15 to 25 departments, each described by a 
separate OWL file. These files are loaded to the target system in an incremental fash-
ion. We measure the elapsed time for loading each data set, and also the consequent 
database sizes for Sesame-DB and DLDB-OWL. We do not measure the occupied 
memory sizes for Sesame-Memory and OWLJessKB because it is difficult to accu-
rately calculate them. However, since we evaluate all systems on a platform with a 
fixed memory size, the largest data set that can be handled by a system measures its 
memory efficiency. 
 
Query test 

For query testing, the 14 benchmark queries are expressed in RQL [21], Jess, and a 
KIF[11]-like language (see the appendix) and issued to Sesame, OWLJessKB, and 
DLDB-OWL respectively. We do not use a common language in the test to eliminate 
affect of query translation to the query response time.   

Query response time is collected in the way defined by the benchmark, which is 
based on the process used in database benchmarks [3, 4, 8, 25]. To account for cach-
ing, each of the fourtheen queries is executed for ten times consecutively and the aver-
age time is computed. 

We also examine query answer completeness of each system. In logic, an inference 
procedure is complete if it can find a proof for any sentence that is entailed by the 



knowledge base. With respect to queries, we say a system is complete if it generates 
all answers that are entailed by the knowledge base, where each answer is a binding of 
the query variables that results in an entailed sentence. However, on the Semantic 
Web, partial answers will often be acceptable. So it is important not to measure com-
pleteness with such a coarse distinction. Instead, we measure the degree of complete-
ness of each query answer as the percentage of the entailed answers that are returned 
by the system. Note that we request that the result set contains unique answers. 

In addition, as we will show in next section, we have realized in this evaluation that 
query soundness is also worthy of examination. With similar argument to the above, 
we in this evaluation measure the degree of soundness of each query answer as the 
percentage of the answers returned by the system that are actually entailed. 

 
Test environment 

We have done the test on a desktop computer. The environment is as follows: 
� 1.80GHz Pentium 4 CPU; 256MB of RAM; 80GB of hard disk 
� Windows XP Professional OS; Java SDK 1.4.1; 512MB of max heap size 

In order to evaluate OWLJessKB, we needed to adjust this configuration slightly. 
With the standard setting for max heap size in Java, the system failed to load the one-
university data set due to out of memory errors. As a workaround, we increased the 
maximum heap size to 1GB, which requests large amount of virtual memory from op-
erating system. This change allowed OWLJessKB to properly load the dataset. 

4 Results and Discussions 

4.1 Data Loading 

Table 1 shows the data loading time for all systems and the on-disk repository sizes of 
DLDB-OWL and Sesame-DB. Fig. 1 depicts how the data loading time grows as the 
data set size increases and compares the repository sizes of the two database-based 
systems. 

The test results have reinforced scalability as an important issue and challenge for 
Semantic Web knowledge base systems. One of the first issues is how large of a data 
set each system can handle. As expected, the memory-based systems did not perform 
as well as the persistent storage systems in this regard. OWLJessKB, could only load 
the 1-university data set, and took over 20 times longer than any other system to do so. 
On the other hand, we were surprised to see that Sesame-Memory could load up to 10 
universities, and was able to do it in 5% of the time of the next fastest system. How-
ever, for 20 or more universities, Sesame-Memory also succumbed to memory limita-
tions. 

Using the benchmark, we have been able to test both Sesame-Memory and Sesame-
DB on larger scale data sets than what has been reported so far. The result reveals an 
apparent problem for Sesame-DB: it does not scale in data loading, as can be seen 
from Fig. 2. As an example, it took over 300 times longer to load the 20-university 
data set than the 1-university data set, although the former set contains only about 25 
times more instances than the later. We extrapolate that it will take Sesame-DB over 3 



weeks to finish up loading the 50-university data set. Therefore, we have decided not 
to do that unrealistic test. 

Table 1.  Load Time and Repository Sizes 

 Data Set Instance Num Load Time (hh:mm:ss) Repository Size (KB) 
DLDB-OWL 00:05:43 16,318 
Sesame-DB 00:09:02 48,333 

Sesame-Memory 00:00:13 - 
OWLJessKB 

LUBM 
(1, 0) 103,074 

03:16:12 - 
DLDB-OWL 00:51:57 91,292 
Sesame-DB 03:00:11 283,967 

Sesame-Memory 00:01:53 - 
OWLJessKB 

LUBM 
(5, 0) 645,649 

- - 
DLDB-OWL 01:54:41 184,680 
Sesame-DB 12:27:50 574,554 

Sesame-Memory 00:05:40 - 
OWLJessKB 

LUBM 
(10, 0) 1,316,322 

- - 
DLDB-OWL 04:22:53 388,202 
Sesame-DB 46:35:53 1,209,827 

Sesame-Memory - - 
OWLJessKB 

LUBM 
(20, 0) 2,781,322 

- - 
DLDB-OWL 12:37:57 958,956 
Sesame-DB - - 

Sesame-Memory - - 
OWLJessKB 

LUBM 
(50, 0) 6,888,642 

- - 

Fig. 1. Load Time and Repository Sizes. The left hand figure shows the load time. The right 
hand figure shows the repository sizes of the database-based systems. 

In contrast, DLDB-OWL displays good scalability in data loading. We suspect the 
different performance of the two systems is caused by the following two reasons. First, 
to save space, both DLDB-OWL and Sesame map resources to unique IDs maintained 
in a table. When a resource is encountered during the data loading, they will look up 
that table to determine if it has not been seen before and need to be assigned a new ID. 
As mentioned in [23], querying the ID table every time is very likely to slow down the 
data loading as the data size grows. In its implementation, Sesame also assigns every 
literal an ID, while DLDB-OWL stores literals directly in the destination tables, which 
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means Sesame has to spend even more time on ID lookup. Moreover, in order to im-
prove performance, DLDB-OWL caches resource-ID pairs during current loading. 

A second reason for the performance difference is related to the way Sesame per-
forms inference. Sesame is a forward-chaining reasoner, and in order to support 
statement deletions it uses a truth maintenance system to track all deductive depend-
encies between statements. As [5] shows, this appears to affect the performance sig-
nificantly if there are many inferred statements or the data set is fairly large. We 
should note that this scalability problem was not as noticeable in our previous study 
involving a DAML+OIL benchmark [14]. We believe this is because the prior ex-
periment used daml:domain (as opposed to rdfs:domain) in its ontology, which does 
not trigger inferences in Sesame. 

4.2 Query Response Time 

Table 2 is a complete list of the query test results, including the query response time, 
number of answers, and their completeness. Note that what are displayed in each an-
swer row are only the numbers of correct answers (Refer to Section 4.3). Fig. 2 com-
pares by graphs the query response time of the systems except OWLJessKB. 

In terms of query, the results also lead to some scalability and efficiency concerns. 
Although compared to the performance of its predecessor DAMLJessKB [22] in [14], 
OWLJessKB improves its query time greatly at the sacrifice of much longer loading 
time, it is still the slowest in answering thirteen of the queries. Sesame-DB was also 
very slow in answering some queries (even for one university), including Queries 2, 8, 
and 9. As for DLDB-OWL, it is the only system that has been tested with the largest 
data set. One concern is that when it comes to the larger data sets especially the 50-
university set, DLDB-OWL’ s query time no longer grows linearly for some queries, 
i.e., Queries 2, 5, 6, 7, 9, and 14. Moreover, it failed to answer Query 2 on the 50-
univeristy data set after MS Access ran out of temporary space. Compared to other 
systems, Sesame-Memory, is the fastest in answering all of the queries. It is also the 
fastest in data loading. This suggests that it might be the best choice for data of small 
scale if persistent storage and OWL inference is not required. 

We have observed that those queries for which Sesame-DB’ s performance goes 
down dramatically are common in that they do not contain a specific URI as a subject 
or object in the statements. On the other hand, Sesame-DB shows a nice property in 
answering some other queries like Queries 3, 4, 5, 7, and 8: there was no proportional 
increase in the response time as the data size grows. We have also noticed a common 
feature of these queries, i.e., they have constant number of results over the test data 
sets. Whether these are the causes or coincidences is a subject for future work. 

It is beyond the scope of this paper to analyze in depth the query evaluation and op-
timization mechanism in each system. Instead, we propose some topics for future in-
vestigation. One is to explore the potential relationship between query types and the 
performance of a certain system and its characteristics. Of course how to categorize 
queries is yet another issue. As another, Sesame-DB implements the main bulk of the 
evaluation in its RQL query engine while its query engine for another query language 
SeRQL pushes a lot of the work down to the underlying DBMS. As for  DLDB-OWL,  



Table 2. Query Test Results. (* correct answers only, refer to Table 3) 
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Time(ms) 59 46 15 9203 226 43 37 412 40 106 887 96 2211 

Answers 4 4 4 4 4 4 4 4 4 4 4 4 4 1 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 181 51878 87 116297 2320 368423 495 14556 711678 1068 392392 1474664 failed 

Answers 0 0 0 0 9 9 9 28 28 28 59 59 - 2 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 - 

Time(ms) 218 40 0 13990 2545 53 1 5540 59 0 11956 56 36160 

Answers 6 6 6 6 6 6 6 6 6 6 6 6 6 3 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 506 768 6 211514 2498 823 4 5615 762 4 14856 881 10115 

Answers 34 34 34 34* 34 34 34 34 34 34 34 34 34 4 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 617 2945 17 5929 4642 3039 17 11511 3214 17 27756 3150 135055 

Answers 719 719 719 719 719 719 719 719 719 719 719 719 719 5 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 

Time(ms) 481 253 48 1271 4365 1517 251 11158 3539 543 28448 12717 151904 

Answers 7790 5916 5916 7790* 48582 36682 36682 99566 75547 75547 210603 160120 519842 6 

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100 

Time(ms) 478 603 3 128115 2639 606 4 7028 634 4 18073 657 121673 

Answers 67 59 59 67 67 59 59 67 59 59 67 59 67 7 

Completeness 100 88 88 100 100 88 88 100 88 88 100 88 100 

Time(ms) 765 105026 273 164106 3004 108384 262 5937 108851 264 13582 103779 39845 

Answers 7790 5916 5916 7790* 7790 5916 5916 7790 5916 5916 7790 5916 7790 8 

Completeness 100 76 76 100 100 76 76 100 76 76 100 76 100 

Time(ms) 634 34034 89 87475 7751 256770 534 19971 460267 1123 57046 1013951 323579 

Answers 208 103 103 208 1245 600 600 2540 1233 1233 5479 2637 13639 9 

Completeness 100 50 50 100 100 48 48 100 49 49 100 48 100 

Time(ms) 98 20 1 141 1051 36 0 2339 40 0 5539 50 15831 

Answers 4 0 0 4 4 0 0 4 0 0 4 0 4 10 

Completeness 100 0 0 100 100 0 0 100 0 0 100 0 100 

Time(ms) 48 65 1 1592 51 73 1 61 84 3 78 82 143 

Answers 0 0 0 224 0 0 0 0 0 0 0 0 0 11 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 

Time(ms) 62 4484 12 11266 78 4659 14 123 4703 12 310 4886 745 

Answers 0 0 0 15* 0 0 0 0 0 0 0 0 0 12 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 

Time(ms) 200 4 1 90 2389 9 1 5173 12 1 11906 21 34854 

Answers 0 0 0 1 0 0 0 0 0 0 0 0 0 13 

Completeness 0 0 0 100 0 0 0 0 0 0 0 0 0 

Time(ms) 187 218 42 811 2937 1398 257 7870 14021 515 19424 11175 106764 

Answers 5916 5916 5916 5916 36682 36682 36682 75547 75547 75547 160120 160120 393730 14 

Completeness 100 100 100 100 100 100 100 100 100 100 100 100 100 



 
Fig. 2. Query time of DLDB-OWL, Sesame-DB, and Sesame-Memory (up to 20 universities) 
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it directly translates as much of the query for the database. Further work should be 
done to investigate how these design differences as well as the underlying DBMS used 
impact performance. 

4.3 Query Completeness and Soundness 

As described in [12], we have chosen the benchmark test queries according to several 
criteria.  In fact, another effort we have made in defining these queries is to make them 
as realistic as possible. In other words, we want these queries to represent, to some ex-
tent, those in the real world. We are very interested in seeing what queries can be an-
swered by each system. 

As mentioned before, Sesame is able to address RDF/RDFS semantics while 
DLDB-OWL and OWLJessKB integrate extra OWL inference capability. As the re-
sults turned out, all systems could answer Queries 1 through 5 and Query 14 com-
pletely. As we expected, DLDB-OWL was able to find all the answers for Queries 6 to 
10, which requires subsumption inference in order to get complete results, while Ses-
ame could only find partial or no answers for them. It is interesting to notice that 
DLDB-OWL and Sesame found complete answers for Query 5 in different ways: 
DLDB-OWL made use of subsumption, while Sesame, although not able to figure out 
the subsumption, used an rdfs:domain restriction to determine the types of the indi-
viduals in the data set and thus achieved the same result. OWLJessKB could find all 
the answers for every query, and was the only system to answer Queries 11 and 13 
completely, which assume owl:TransitiveProperty and owl:inverseOf inference re-
spectively. Nevertheless, we have discovered that OWLJessKB made unsound infer-
ences with respect to some queries. Specifically, it returned incorrect answers to Que-
ries 4, 6, 8, and 12 because it incorrectly inferred that Lecturer is a Professor, 
Employee a Student, and Student a Chair. We list in Table 3 the completeness and 
soundness of OWLJessKB for each query. 

Table 3. Query Soundness of OWLJessKB. 

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 
Total/ 

Correct answers 4/4 0/0 6/6 41/34 719/719 8330/ 
7790 67/67 8330/ 

7790 208/208 4/4 224/224 540/15 1/1 5916/5916 

Soundness 100 100 100 83 100 94 100 94 100 100 100 3 100 100 

4.4 A Combined Metric 

As the previous section shows, the target systems in this evaluation differ a lot in their 
inference capability. We feel it is insufficient to evaluate the query response time and 
answer completeness and soundness in isolation. We need a metric to measure them in 
combination so as to better appreciate the overall performance of a system and the po-
tential tradeoff between the query response time and inference capability. At the same 
time, we have realized that this is a challenging issue. We introduce here our initial at-
tempt to address this issue. 



First, we use the F-Measure metric to compute the tradeoff between query com-
pleteness and soundness, since essentially they are analogous to recall and precision in 
Information Retrieval. In the formula below, Cq and Sq (�[0, 1]) are the answer com-
pleteness and soundness for query q. b determines the weighting of Cq and Sq. We set 
it to 1 here, which means we equally weight completeness and soundness. 
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Then, we define a composite metric CM of query response time and answer com-
pleteness and soundness as the following, which is also inspired by F-Measure: 
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In the above, M is the total number of test queries; Pq �  [0, 1] is defined as 

Pq  = max (1 – 
N

Tq
, �� 

Tq is the response time (ms) for query q and N is the total number of instances in 
the data set concerned. We have used a timeout value to eliminate undue affect of 
those query response time that is extremely far away from others in the test results: if 
to a certain query q, a system’ s response time per instance is greater than 1- , where  
is a very small positive value, ZH�ZLOO�XVH� �IRU�3q instead. :H�XVH� �RI��������LQ�WKLV�
evaluation. �has the same role as b in Fq and is also set to 1. 

Generally speaking, the CM metric will reward those systems that can answer que-
ries faster, more completely and more soundly. We calculate the metric value of each 
target system with respect to each data set. Fig. 3 shows the results. We find that these 
numerical results are very helpful for us to appreciate the overall performance of each 
system. DLDB-OWL achieves higher scores across all the data sets than the others. 
This helps us believe that its extra inference capability is not counterproductive. On 
the contrary, OWLJessKB receives the lowest value, emphasizing the need of per-
formance improvement in it. And the higher CM values Sesame-Memory gets than 
Sesame-DB again suggest that it is a reasonable choice for small scale application if 
persistent storage is not required, particularly if completeness is not significant. 

 

Fig. 3. CM values with weights b=1 and  � 
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5 Related Work 

To the best of our knowledge, the Lehigh University Benchmark we used in the 
evaluation is the first one for Semantic Web systems. [1] has developed some bench-
mark queries for RDF, however, these are mostly intensional queries, while we are 
concerned with extensional queries for OWL. Some attempts have been done to 
benchmark description logic systems [10, 17]. The emphasis of this work is to evalu-
ate the reasoning algorithms in terms of the tradeoff between expressiveness and trac-
tability in description logic. Our benchmark is not a description logic benchmark. We 
are more concerned about the issue of storing and querying large amount of data that 
are created for realistic Semantic Web systems. Detailed discussion on related work to 
the benchmark can be found in [12]. 

The Web Ontology Working Group provides a set of OWL test cases [7]. They are 
intended to provide examples for, and clarification of, the normative definition of 
OWL and focus on the completeness and soundness with respect to individual 
features. Different from our benchmark suite, they are not suitable for the evaluation 
of scalability. 

Tempich and Volz [26] have done some preliminary work towards a benchmark for 
Semantic Web reasoners. They also point out that the response time as well as the cor-
rectness and completeness should be taken into account when formulating benchmark 
metrics. Though their benchmark is still under construction, they analyze the publicly 
available ontologies and report them to be clustered into three categories. According 
to the characteristics of each category, our univ-bench ontology happens to be a syn-
thetic "description logic-style” ontology, which has a moderate number of classes but 
several restrictions and properties per class. Therefore we argue that our evaluation 
represents at least a considerable portion of the real word situations. The other two 
categories are terminological ontologies and database schema-like ontologies. We 
plan to extend our benchmark suite to those two categories in the future. 

6 Conclusions 

We presented an evaluation of four knowledge base systems (KBS) with respect to use 
in large OWL applications, including two memory–based systems (OWLJessKB and 
memory-based Sesame) and two systems with persistent storage (database-based Ses-
ame and DLDB-OWL). The experiment was conducted in a systematic and standard 
way by using the Lehigh University Benchmark. We tested those systems with 5 sets 
of benchmark data and 14 extensional queries. To our knowledge, no experiment has 
been done with the scale of data used here. The smallest data size used consists of 15 
OWL files totaling 8MB, while the largest data size consists of 999 files totaling 
583MB. 

It is clear that a number of factors must be considered when evaluating a KBS. 
From our analysis, of the systems tested: DLDB is the best for large data sets where an 
equal emphasis is placed on query response time and completeness. Sesame-Memory 
is the best when the size is relatively small (e.g., 1 million triples) and only RDFS in-



ference is required; while for a larger data set (e.g., between 1 and 3 million triples), 
Sesame-DB may be a good alternative. OWLJessKB is the best for small datasets 
when OWL Lite reasoning is essential, but only after its unsoundness has been cor-
rected. 

It should be pointed out that we believe that the performance of any given system 
will vary depending on the structure of the ontology and data used to evaluate it. Thus 
the Lehigh University Benchmark does not provide the final say on what KBS to use 
for an application. However, we believe that is appropriate for a large class of applica-
tions. Furthermore, the basic methodology can be used to generate ontologies and 
datasets for other classes of applications. 
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Appendix: Test Queries 

We herein describe each query in a KIF like language, in which a query is written as a 
conjunction of atoms. Following that we describe the characteristics of the query. 

 
 

 
 
 

Query1 
(type GraduateStudent ?X) (takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0) 

This query bears large input and high selectivity. It queries about just one class and one 
property and does not assume any hierarchy information or inference. 

Query2 
(type GraduateStudent ?X) (type University ?Y) (type Department ?Z) 
(memberOf ?X ?Z) (subOrganizationOf ?Z ?Y) (undergraduateDegreeFrom ?X ?Y) 

This query increases in complexity: 3 classes and 3 properties are involved. Additionally, 
there is a triangular pattern of relationships between the objects involved. 

Query3 
(type Publication ?X)  
(publicationAuthor ?X http://www.Department0.University0.edu/AssistantProfessor0) 

This query is similar to Query 1 but class Publication has a wide hierarchy. 
Query4 

(type Professor ?X) (worksFor ?X http://www.Department0.University0.edu) 
(name ?X ?Y1) (emailAddress ?X ?Y2) (telephone ?X ?Y3) 



 

Query10 
(type Student ?X) (takesCourse ?X http://www.Department0.University0.edu/GraduateCourse0) 

This query differs from Query 6, 7, 8 and 9 in that it only requires the (implicit) subClas-
sOf relationship between GraduateStudent and Student, i.e., subClassOf relationship between 
UndergraduateStudent and Student does not add to the results. 
 

Query12 
(type Chair ?X) (type Department ?Y)  
(worksFor ?X ?Y) (subOrganizationOf ?Y http://www.University0.edu) 

The benchmark data do not produce any instances of class Chair. Instead, each Department 
individual is linked to the chair professor of that department by property headOf. Hence this 
query requires realization, i.e., inference that that professor is an instance of class Chair be-
cause he or she is the head of a department. Input of this query is small as well. 

Query13 
(type Person ?X) (hasAlumnus http://www.University0.edu ?X) 

Property hasAlumnus is defined in the benchmark ontology as the inverse of property de-
greeFrom, which has three subproperties: undergraduateDegreeFrom, mastersDegreeFrom, 
and doctoralDegreeFrom. The benchmark data state a person as an alumnus of a university us-
ing one of these three subproperties instead of hasAlumnus. Therefore, this query assumes 
subPropertyOf relationships between degreeFrom and its subproperties, and also requires in-
ference about inverseOf. 

Query11 
(type ResearchGroup ?X) (subOrganizationOf ?X http://www.University0.edu) 

Query 11, 12 and 13 are intended to verify the presence of certain OWL reasoning capa-
bilities in the system. In this query, property subOrganizationOf is defined as transitive. Since 
in the benchmark data, instances of ResearchGroup are stated as a sub-organization of a De-
partment individual and the later suborganization of a University individual, inference about 
the subOrgnizationOf relationship between instances of ResearchGroup and University is re-
quired to answer this query. Additionally, its input is small. 

Query7 
(type Student ?X) (type Course ?Y) 
(teacherOf http://www.Department0.University0.edu/AssociateProfessor0 ?Y) (takesCourse ?X ?Y) 

This query is similar to Query 6 in terms of class Student but it increases in the number of 
classes and properties and its selectivity is high. 

Query8 
(type Student ?X) (type Department ?Y) (memberOf ?X ?Y) 
(subOrganizationOf ?Y http://www.University0.edu) (emailAddress ?X ?Z) 

This query is further more complex than Query 7 by including one more property. 
Query9 

(type Student ?X) (type Faculty ?Y) (type Course ?Z) 
(advisor ?X ?Y) (takesCourse ?X ?Z) (teacherOf ?Y ?Z) 

Besides the aforementioned features of class Student and the wide hierarchy of class Fac-
ulty, like Query 2, this query is characterized by the most classes and properties in the query 
set and there is a triangular pattern of relationships. 

Query6 
(type Student ?X) 

This query queries about only one class. But it assumes both the explicit subClassOf rela-
tionship between UndergraduateStudent and Student and the implicit one between Graduat-
eStudent and Student. In addition, it has large input and low selectivity. 

Query5 
(type Person ?X) (memberOf ?X http://www.Department0.University0.edu) 

This query assumes subClassOf relationship between Person and its subclasses and sub-
PropertyOf relationship between memberOf and its subproperties. Moreover, class Person fea-
tures a deep and wide hierarchy. 

This query has small input and high selectivity. It assumes subClassOf relationship be-
tween Professor and its subclasses. Class Professor has a wide hierarchy. Another feature is 
that it queries about multiple properties of a single class. 

 

Query14 
(type UndergraduateStudent ?X) 

This query is the simplest in the test set. This query represents those with large input and 
low selectivity and does not assume any hierarchy information or inference. 


