
An Ontology-Based System to Identify Complex Network Attacks

Lisa Frye
Computer Science Department

Kutztown University
Kutztown, USA

frye@kutztown.edu

Liang Cheng, Jeff Heflin
Department of Computer Science and Engineering

Lehigh University
Bethlehem, USA

{cheng,heflin}@cse.lehigh.edu

Abstract— Intrusion Detection Systems are tools used to detect
attacks against networks. Many of these attacks are a sequence of
multiple simple attacks. These complex attacks are more difficult
to identify because (a) they are difficult to predict, (b) almost
anything could be an attack, and (c) there are a huge number of
possibilities. The problem is that the expertise of what constitutes
an attack lies in the tacit knowledge of experienced network
engineers. By providing an ontological representation of what
constitutes a network attack human expertise to be codified and
tested. The details of this representation are explained. An
implementation of the representation has been developed. Lastly,
the use of the representation in an Intrusion Detection System for
complex attack detection has been demonstrated using use cases.

Keywords- Computer network security; Intrusion Detection
System; Ontology

I. INTRODUCTION
Detecting an attack against a network or host, also referred

to as intrusion detection, is an active research area that does
not have a definitive solution. Intrusion detection is a difficult
task for a variety of reasons. First, the pure volume of data that
requires analysis to detect an intrusion is daunting, often
making this task unmanageable. Second, the lack of a common
format for representing attack data makes it difficult to utilize
multiple systems to assist with intrusion detection. Limiting
the data analysis to one system makes intrusion detection more
difficult. Lastly, the differences in each individual attack, and
the daily introduction of new attacks, make it difficult to
represent the attacks formally. This often requires each attack
to have its own representation, not allowing for generic attack
representation. This limits the ability for multiple systems to
use one representation for the same attack. It also makes new
attack identification difficult. Intrusion detection is often
performed by an Intrusion Detection System (IDS) [1].

A simple attack is a single-step attack that is generally
straightforward to perform, such as to ping all nodes in a
network. The occurrence of a simple attack in a network may
indicate that an attacker is just trying an easy attack. The
assemblage of several simple attacks may indicate the
occurrence of a more complex attack. In order to understand
the way simple attacks may fit together to form a complex
attack, it is necessary to consider their spatial and temporal
properties. For instance, pings to hosts on the same network,
with incrementing IP addresses, over a span of several days,

may indicate a network manager doing simple management or
troubleshooting tasks. Given the same set of pings, over a span
of several minutes, typically indicates an attacker looking for
available hosts to attack. It is necessary to see that these ping
packets are generated from the same source host and also
within the same time period.

Frye, Cheng, and Kaplan [2] developed a methodology to
detect complex attacks. The methodology described in [2] is
the preliminary design for the formal representation defined in
this paper. This methodology was extended by defining the
formal representation utilizing ontology [3]. The ontology
development was based upon the family of complex attacks
identified by attack trees in [2]. The coloring scheme has not
been implemented yet; that will become part of the probability
of the attack that is part of the future work.

The primary goal of this research was to develop a Traffic-
based Reasoning Intrusion Detection System using Ontology
(TRIDSO) to detect complex attacks. The first contribution is
a thorough explanation of a formal method to represent
complex attacks. This will in turn provide an approach to
represent generic attacks, which will allow new attacks to be
identified. The second contribution is the development of an
Intrusion Detection System using ontology to describe specific
traffic and attack concepts. TRIDSO represents a new type of
IDS and therefore is an important contribution to the
development of more sophisticated approaches to intrusion
detection. The last contribution is the validation of TRIDSO
via use cases.

The remainder of this paper is organized as follows. Section
2 discusses related work. Section 3 discusses the system
architecture for the approach developed in this research. The
ontology developed is described in Section 4. Section 5
describes the implementation and evaluation results.
Conclusions and future work are provided in Section 6.

II. RELATED WORK
Over the years there has been a significant amount of IDS

research. A variety of methods have been suggested for the
implementation of IDS. One avenue of research is the use of
ontology. Ontology has been utilized in various aspects of
security and intrusion detection.

One system that utilizes ontology to aid in intrusion
detection is the Reaction after Detection (ReD) Project [4].
The primary goal of ReD was to determine the most
appropriate reaction, both short and long term, to an identified

attack. A long-term reaction will consist of the deployment of
new security policies to the network. An ontology was utilized
in this approach to instantiate the new security policies and
determine policy violations.

An ontology-based IDS was proposed by Undercoffer,
Joshi, and Pinkston [5] to detect intrusions against hosts. This
approach is anomaly-based, so baseline behavior of the
network is obtained and abnormal behavior identified. The
ontology was used to define the attack and its properties,
including the consequences and means of the attack. This
work was able to detect complex attacks but required an IDS
to be installed at each host to be monitored and the
maintenance of known vulnerabilities.

Context-aware alert analysis was researched by Xu, Xiao,
and Wu [6]. They argued that alert analysis for unified
security management can be divided into three stages: alert
collection, alert evaluation, and alert correlation. An ontology
was developed that included the context, asset owner,
vulnerability, threat and countermeasure for attacks. Alert
correlation was achieved by adding behavioral information
through the use of rules.

Vorobiev and Bekmamedova [7] discussed how distributed
firewalls and IDSs (F/IDSs), monitoring different hosts, must
work together in a distributed manner. Several ontologies were
developed, most of which were used to give a simplified and
common vocabulary for security incidents and the distributed
F/IDSs. These worked collaboratively to detect multi-phased,
complex attacks. When a host identifies an attack, it shares
this information with the other hosts in the framework, which
then uses the shared information to detect a multi-phased,
complex attack.

A multiagent system using ontology was developed for
Outbound Intrusion Detection (OID) by Mandujan [8]. The
goal of an OID is to help protect remote systems. This work
accomplished OID by taking advantage of the fact that many
complex attacks are automated using scripts or executable
programs. The system developed analyzed changes in the
network traffic and the resources used by an automated attack
tool. The ontology identified all elements about the originating
system, including automated attack tools, network traffic,
signatures, sensors, and reactions, as well as their
relationships.

Much of the previous work is focused on identifying
vulnerabilities of systems and evaluating the threats against
these targets. The work presented in this paper focused on the
network traffic and not the vulnerabilities of targets. By doing
this, it was possible to identify attacks and also attack
attempts, even if the vulnerability didn’t exist in the target
node or network. This may have been the result of the service
or application that is the target of the vulnerability not being
implemented in the network, or the target may have been
patched to resist the vulnerability, etc. It is important to note
that attack attempts are just as important or meaningful as an
actual attack. The attempts can alert the administrator to an
attacker that is trying to penetrate their network or a node on
their network. It also allows the administrator to prepare for

future deployments, such as a user adding a web server to the
network that may contain vulnerabilities.

The work here began with specific attack examples but
evolved into more general cases. The rules developed for
identifying complex, multi-phase attacks are generic, and will
lead to the identification of any type of attack, including zero-
day attacks. These rules will allow a family of complex, multi-
phased attacks to be defined and detected. By representing
these attacks ontologically, a more advanced and reusable
representation of network attacks will be created.

III. SYSTEM ARCHITECTURE
There are existing IDSs that examine the network traffic and

identify possible attacks to the network. Many of the attacks
identified by these IDSs are simple attacks or attacks
consisting of one single attack. The IDS alarms when a single
attack type is identified in the network traffic. Snort [9, 10] is
an example of this type of IDS; it identifies possible simple
attacks by checking network traffic against rules and alarms if
any traffic matches the rule.

A. Traffic Centric Architecture
Many IDSs identify intrusions by looking for data that is

destined for a host with a vulnerability that the data can
exploit. These systems only identify intrusions against known
vulnerabilities. The network manager should not only be
concerned with attacks against nodes that are vulnerable, but
should also watch for any attack attempt by an intruder. This is
important because a network manager cannot predict what
users on the network will install or deploy.

For example, consider an intruder attempting to circumvent
a vulnerability in web services. If there are no vulnerable
systems on the network, then the attack attempt would be
unsuccessful; however, this does not preclude the same attack
becoming successful in the future. If a user installed a new
web server that is vulnerable to the attack, the attack attempt
would then become successful against this new web server.

To make the network more resistant to successful attacks,
the network manager should analyze all attack attempts
against the network. The system developed, TRIDSO, was
based on all network traffic. This allowed the system to detect
all intrusion attempts, regardless if the intrusion was
successful or not.

B. System Design
The system design, illustrated in Fig. 1, consists of four

subsystems: vulnerability, device, traffic and attack. The
reasoner is necessary to query the knowledge base, which
stores the ontologies and their instances. The built-in reasoner
of Jena [11], an ontology development library, was used for
TRIDSO.
The vulnerability subsystem contains data about existing
vulnerabilities. The device subsystem consists of the device
ontology and a mapper to convert device data to ontology
instances. The ontology consists of devices in the network and
their characteristics. Implementation of these subsystems will
be future work.

Figure. 1. TRIDSO Architecture (arrows indicate the flow of data)

The traffic subsystem deals with the raw network traffic
data. A packet sniffer captures all network traffic, which is
converted to ontology instances. This ontology represents the
raw network traffic data in a variety of forms, such as
individual frames or datagrams, packet streams, TCP
connections, etc. Also part of the traffic subsystem is
information about alerts found using an existing tool, Snort.
The capture file is the input to Snort and the output is then
used as the input to a mapper that creates ontology instances
for all alerts found.

The attack subsystem consists of an ontology that describes
attacks that can occur. The attack data is obtained from the
traffic ontology. This information is used to create additional
instances in the knowledge base, particularly to identify the
occurrence of simple and complex attacks.

IV. ONTOLOGY DEVELOPMENT

The primary component of TRIDSO is the various
ontologies. Each subsystem in TRIDSO includes at least one
ontology to represent data necessary for that subsystem. The
ontologies were written using OWL [12]. For the first phase of
development in TRIDSO, only the traffic and attack
subsystems were implemented. The ontologies for each of
these subsystems are described here.

A. Traffic Ontology
Network traffic was captured using a packet capture utility.

This data was converted to ontology instances in the traffic
ontology. There are many different classes in the traffic
ontology (see Fig. 2). The primary class is the Packet class,
containing the date and time for the packet. This class is then
broken down into the various layers according to the Internet
Protocol Stack [13]. For instance, the IPPacket class contains
instances of all IP packets found in the captured traffic data.

Figure 2. Traffic Ontology Diagram

The Application class contains the application layer protocol
and data for ICMP and layer-4 packets (TCP and UDP).

The Stream class of the traffic ontology contains
information about past and present flows between two nodes
in the network. This includes ARP, ICMP, TCP and UDP
flows. The instances in the Stream classes were used to
identify specific simple attacks, such as the attacker
identifying an existing TCP connection in order to conduct a
man-in-the-middle attack. These instances were also used to
identify some poison attacks; the existing ARP-to-IP address
translations must be known, which were retrieved from the
L3Stream class, to identify if an ARP poison has occurred (a
new IP address was returned in response to an ARP request for
an existing ARP address).

The PacketCollection class was used to group common
packet instances and classify them according to type. The
types of concern to TRIDSO were identified in the
PacketType class. For instance, if there were multiple ping
packets to the same node within a specified time frame, an
instance was created in the PacketCollection class of
PacketType PingFloodType. These instances were later used
by TRIDSO to assist in attack identification.

The PacketSequence classes were utilized in identifying
several packets that are meaningful if they occurred in a
specified order. If order is not important, an instance was not
created in these classes.

Various packet types were inferred in the traffic ontology.
Most of the packet types used OWL restrictions to create their

instances. The packet types of interest in TRIDSO were
special packets using the protocols TCP and ICMP (Internet
Control Message Protocol). As an example, a ping packet is an
ICMP packet with an ICMP Type value of 8; therefore, the
PingPacket class is the intersection of the ICMPPacket class
and the restriction of the ICMPType property to be the value
of 8. The remaining packet types in TRIDSO were handled in
a similar fashion, by placing restrictions on properties of the
TCPPacket or ICMPPacket classes.

The network traffic data that was captured was run through
Snort. An alert was created in Snort when a simple attack was
identified in the input file. The output of Snort, consisting of
all the alerts identified, was also used to create ontology
instances in the traffic ontology. An instance was created in
the Alert class hierarchy for each alert identified by Snort.
This allowed the system to take advantage of an existing tool
to aid in its intrusion identification.

B. Attack Ontology
There were two ontologies created for the attack information

in TRIDSO. The first was the attack ontology. This ontology
was used to identify simple attacks. The instances were
created by using inference via ontology constructs and
SPARQL [14], a query language for RDF [15]. Some
instances were created using ontology inference by utilizing
some advanced class definitions, such as restrictions,
intersections, and unions.

The top-level of the attack ontology hierarchy includes four
classes: Availability, Recon, GainAccess, and
ViewChangeData. Each of the four classes in the top-level
represents a high-level type of attack. The hierarchy for each
of these classes was extended to include more detailed attacks
of each type. One such hierarchy is depicted for the
Availability class in Fig. 3.

As one example of the use of inference in TRIDSO,
consider the PingFlood class. A ping packet instance, which is
part of the traffic ontology, was created by defining a
collection of all ping packets. The number of ping packets
from the PingPacket class that occurred in a specified
timeframe to the same node or network was determined. If the
number of ping packets in the timeframe was above a
threshold, then an instance was created in the PacketCollection
class with a type of PingFloodType. The instances of the
PingFlood class were the packet collections of
PingFloodType. These were created using more inference;
they were the intersection of the instances in the
PacketCollection class that had the value of PingFloodType
for the pcType property.

The instances in the super classes of the PingFlood class
were also created using inference through OWL constructs.
These instances were created by using taxonomic relationships
between the classes. PingFlood is a subclass of the Flood
class, so any instance in PingFlood was also an instance in
Flood. Each node in Fig. 3 is a subclass of its parent node, so
each parent node inferred its instances from its child node.
Through these taxonomic relationships, instances were created

Figure 3. Availability Hierarchy in Attack Ontology Diagram

in Resources, DoS, Availability, and Attack, all from the
instances in the PingFlood class. Without the use of ontology,
a query for Availability attacks would not return any results.

C. Complex Attack Ontology

Complex attacks (Fig. 4) are represented in a separate ontology,
primarily for ease of organization and management. The complex
attacks were built by exploiting inference in the attack ontology. The
leaf nodes are the classes from the attack ontology; they are
represented in this figure for discussion purposes. The only new
classes defined for complex attacks were the complexAttack class
and the four top-level classes. If correlated instances existed in
each leaf node, then an instance was created in the top-level
class. The correlation drawn depended on the top-level class,
or type of complex attack. For instance, if an instance existed
in the PingScan, NodeScan, and Availability classes with a
target IP address of the same node, then an instance was
created in the DoSComplex class, indicating the existence of a
complex denial-of-service attack.

This was done using inference with OWL constructs. The
property wasAttacked has a range of IPaddress, a domain of
Attack, and is the inverseOf hasTargetIP. Instances of the
DoScomplex class were created through the intersection of the
instances of the IPaddress class in the traffic ontology that had
values of the wasAttacked property from the PingScan,
NodeScan, and Availability classes. These instances were
identified using the someValuesFrom restriction in OWL.

Figure 4. Complex Attack Ontology Diagram

V. IMPLEMENTATION AND USE CASE STUDIES
The system was designed to use ontology and related tools

to minimize customized code. This allows the features of
ontology to be leveraged, allowing better adaptability and
flexibility in attack detection. The majority of the customized
code was to initially populate the knowledge base with traffic
data using a mapper program developed using Java and Jena.

A. System Implementation
Before processing any data, an ontology model was created

and populated with the system’s ontology files. This created
the knowledge base and allowed instances to be properly
inferred as the knowledge base was dynamically populated
with instance data.

Network data was captured using a packet capture utility.
The program’s customized code processed the capture file;
each packet was extracted and an instance generated in the
appropriate class of the Packet hierarchy in the traffic
ontology. The alert processing accomplished the same thing
for the alert file and the Alert class hierarchy.

The majority of additional instances were either inferred in
the ontology or created using SPARQL. When possible, OWL
constructs were used, as discussed in the previous section, so
the power of ontology could be attained. When OWL
constructs were not sufficient, then SPARQL was utilized.
SPARQL is a query language, which resembles SQL for
databases and includes the ability to dynamically add instances
to the knowledge base.

An example of the necessity of SPARQL was the creation of
PingScanType packets in the PacketCollection class. Ping scan
packets were identified as ping packets to nodes in the same
network. The network is identified by the IP address. There
are three classes of IP addresses, class A, class B and class C.

The type of address is also determined by the IP address. The
value of the first octet in the IP address will indicate the class
for that IP address. All instances to the same network were
identified, which required instance values to be compared to
each other. If the number of pings to the same network
exceeded a threshold value, then the network address was
added to the IPaddress class and an instance was created in the
PacketCollection class of PingScanType. These instances were
used to create instances in the PingScan class of the attack
ontology. OWL was used to create the instances in the
PingScan class, similar to the PingFlood instances.

Upon completion of the SPARQL queries, the knowledge
base was ready to answer attack queries. One such query was
to identify that a complex attack occurred.

B. Use Cases
To test TRIDSO, real attacks were launched in a test

environment. The data associated with the attacks was
captured using packet capture software. Two use cases of the
system are explained.

Complex Denial of Service Attack: A complex denial of
service attack includes the simple attack steps taken by an
attacker to perform a denial of service against a node or
network. The attack elements that comprise this complex
attack are the attacker finding an available node(s) in the
network (a ping scan), possibly finding an open port on the
node (a node scan) and then launching some type of a denial
of service attack on that device or network (availability
attack), such as a ping flood, making the network card unable
to process legitimate requests.

To detect this type of complex attack, an instance was
created for a PacketCollection of type PingFloodType because
ping packet instances were found to the same node. The
number of pings to the same node was above a threshold value
thus creating an instance of PingFlood in the attack ontology.
Determination of the optimal threshold value to use in
TRIDSO is continuing work.

Inference in the attack ontology, because of subclass
definitions, created an instance of the Availability class. For
this test, a static instance of the PingScan and NodeScan were
created.

For the complex attack classes, an instance of PingScan,
NodeScan, and Availability to the same node, caused an
instance of the DoSComplex class, indicating the occurrence
of a complex denial of service attack. TRIDSO correctly
identified this complex attack.

The Mitnick Attack: A classic complex attack is the Mitnick
attack [16]. This complex attack is an example of a hijacking
attack. The attack consists of a denial of service attack,
originally a Syn Flood attack, predicting the TCP sequence
number, and IP spoofing. This example demonstrates how
TRIDSO will detect this complex attack.

The Syn Flood and TCP sequence number prediction attacks
both utilize the creation, and quick termination, of many TCP
connections to the same host. This is detected in TRIDSO by
looking at the number and length of TCP connections, which
are TCPStream instances in the traffic ontology, and the
number of these instances to the same node. If the occurrence

is above a determined threshold, an instance is created for a
SynFlood. Because of the similarity in how these attack
elements are conducted, this class will be used for both of
these attack elements, making no differentiation between the
specific attack elements, in this case.

For the IP Spoofing attack element, the Stream class will
once again be the key. The L3Stream will include instances
for observed packets with the same source and destination,
essentially creating a mapping of IP address to MAC address.
When a new L3Stream is inserted for the IP Spoofed
packet(s), the IP-MAC address mapping is different. Historical
data will be used to identify the IP Spoofed correlation as an
anomaly, indicating the occurrence of an IPSpoof attack,
causing the creation of an instance of the IPSpoof class in the
attack ontology.

The existence of a SynFlood, also indicating the possibility
of a TCP sequence number prediction attack, and an IPSpoof
instance to the same node indicates the possibility of a Mitnick
complex attack. Since the Mitnick attack is a specific example
of a hijacking attack, TRIDSO will indicate that a hijacking
complex attack occurred and not be specific about the type of
hijacking attacks, Mitnick in this case.

VI. CONCLUSIONS, FUTURE WORK AND LIMITATIONS
Network attacks occur on a daily basis, often going

undetected. With the number of users relying on networks
increasing at a rapid rate, both for personal and business
reasons, it is imperative that networks and services be
available at all times. A successful attack against a network
often makes the network or services unavailable, making
attack detection imperative in today’s networks.

There are many types of Intrusion Detection Systems
available with most of them being only able to detect simple
attacks, such as scanning for an available host or a vulnerable
port. Many attacks are complex, consisting of several simple
attacks conducting in sequence. The development of an IDS
capable of detecting complex attacks would be a significant
contribution to the area of attack detection.

A newly developed system, TRIDSO, monitors the network
traffic looking for the occurrence of complex attacks. The
attack detection is based on reasoning capabilities of ontology.
Three ontologies, in two subsystems, were developed and
incorporated into TRIDSO, allowing for an IDS capable of
detecting complex attacks while providing adaptability and
flexibility in the system. The development of the ontologies to
describe specific traffic and attack concepts provides an
approach to representing generic attacks. This general
representation of attacks, described by the ontologies, is a
contribution to intrusion detection.

Two use cases were explained to demonstrate how TRIDSO
was able to detect these complex attacks. By using ontology to
infer new instances and SPARQL to create new instances,
simple attacks were identified. If the simple attacks in one
complex attack were in the TRIDSO knowledge base, then
TRIDSO detected that complex attack and provided relevant
information to the network manager.

The ontologies and system implementation of TRIDSO will
continue. Refinement of the three ontologies, traffic, attack
and complex attack, will be one area of continued
development. Determining the optimal threshold value for
identifying occurrences of various flood-type attacks, such as
a ping flood, will be future work. As the development of the
ontologies near completion, system evaluation will be done.
As the evaluation process proceeds, it is hopeful that the
generalized representation of the complex attacks will lead to
the identification of unexpected complex attacks. Completion
of TRIDSO, allowing for the identification of generalized
complex attacks would be ground-breaking work for intrusion
detection research.

REFERENCES

[1] A. Fuchsberger. Intrusion Detection Systems and Intrusion Prevention
Systems. Information Security Tech. Report, vol. 10, issue 3, pp. 134-
139, Jan. 2005.

[2] L. Frye, L. Cheng, and R. Kaplan. A Methodology to Identify Complex
Network Attacks. The 2011 International Conference on Security and
Management (SAM’11) at The 2011 World Congress in Computer
Science, Computer Engineering, and Applied Computing
(WORLDCOMP’11), Las Vegas, NV, July 18-21, 2011.

[3] P. Spyns, R. Meersman, and M. Jarrar. Data modeling versus Ontology
engineering. ACM SIGMOD Record, vol. 31, issue 4, pp. 12-17, Dec.
2002.

[4] N. Cuppens-Boulahia, F. Cuppens, J. E. López de Vergara, E. Vázquez,
J. Guerra, and H. Debar. An ontology-based approach to react to
network attacks. International Journal of Information and Computer
Security, vol. 3, issue 3/4, pp. 280-305, Jan. 2009.

[5] J. Undercoffer, A. Joshi, and J. Pinkston. Modeling Computer Attacks:
An Ontology for Intrusion Detection. G. Vigna, E. Jonsson, and C.
Kruegel (Ed.), The Sixth International Symposium on Recent Advances
in Intrusion Detection, pp.113-135, Springer, 2003.

[6] H. Xu, D. Xiao and Z. Wu. Application of Security Ontology to
Context-Aware Alert Analysis. Eighth IEEE/ACIS International
Conference on Computer and Information Science (ICIS 2009),
Shanghai, pp. 171-176, June 1-3, 2009.

[7] A. Vorobiev and N. Bekmamedova. An Ontological Approach Applied
to Information Security and Trust. 18th Australasian Conference on
Information Systems (ACIS 2007), Toowoomba, Queensland, Australia,
Dec. 5-7, 2007.

[8] S. Mandujano. An Ontology-supported Outbound Intrusion Detection
System. Proceedings of the 10th Conference on Artificial Intelligence
and Applications, Taiwanese Association for Artificial Intelligence
(TAAI 2005), Kaohsiung, Taiwan, Dec. 2-3, 2005.

[9] "Snort". Retrieved October 18, 2011, from http://www.snort.org/.
[10] B. Caswell, J. Beale, and A. Baker. Snort IDS and IPS Toolkit.

Burlington, MA: Syngress Publishing, Inc., 2007.
[11] "Jena - A Semantic Web Framework for Java". Retrieved January 5,

2012, from http://jena.sourceforge.net/index.html.
[12] "W3C Semantic Web Web Ontology Lanuage". Retrieved January 23,

2012, from http://www.w3.org/2004/OWL/.
[13] J. F. Kurose and K. W. Ross. Computer Networking: A Top-Down

Approach, Fifth Edition. New York, Addison-Wesley. 2010.
[14] "SPARQL Query Language for RDF". Retrieved January 21, 2012, from

http://www.w3.org/TR/rdf-sparql-query/.
[15] "Resource Description Framework (RDF)". Retrieved November 3,

2011, from http://www.w3.org/RDF/.
[16] S. Northcutt. Network Intrusion Detection: An Analyst's Handbook.

Sams Publishing, 2001.

